
An Integrated Business Rules and Constraints

Approach to Data Centre Capacity Management

Roman van der Krogt, Jacob Feldman, James Little and David Stynes

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

Abstract. A recurring problem in data centres is that the constantly
changing workload is not proportionally distributed over the available
servers. Some resources may lay idle while others are pushed to the limits
of their capacity. This in turn leads to decreased response times on the
overloaded servers, a situation that the data centre provider wants to
prevent. To solve this problem, an administrator may move (reallocate)
applications or even entire virtual servers around in order to spread the
load. Since there is a cost associated with moving applications (in the
form of down time during the move, for example), we are interested in
solutions with minimal changes. This paper describes a hybrid approach
to solving such resource reallocation problems in data centres, where
two technologies have to work closely together to solve this problem in
an e�cient manner.
The �rst technology is a Business Rules Management System (BRMS),
which is used to identify which systems are considered to be overloaded
on a systematic basis. Data centres use complex rules to track the be-
haviour of the servers over time, in order to properly identify overloads.
Representing these tracking conditions is what the BRMS is good for.
It de�nes the relationships (business constraints) over time between dif-
ferent applications, processes and required resources that are speci�c to
the data centre. As such, it also allows a high degree of customisation.
Having identi�ed which servers require reallocation of their processes, the
BRMS then automatically creates an optimisation model solved with a
Constraint Programming (CP) approach. A CP solver �nds a feasible or
the optimal solution to this CSP, which is used to provide recommen-
dations on which workload should be moved and whereto. Notice that
our use of a hybrid approach is a requirement, not a feature: employing
only rules we would not be able to compute an optimal solution; using
only CP we would not be able to specify the complex identi�cation rules
without hard-coding them into the program. Moreover, the dedicated
rule engine allows us to process the large amounts of data rapidly.

1 Introduction

Data centres are �buildings where multiple servers and communication gear are
colocated because of their common environmental requirements and physical se-
curity needs, and for ease of maintenance� [1]. They have become increasingly

more important due to two trends. Firstly, there is a need to process larger
and larger workloads and store ever increasing amounts of data. An obvious
example of this would be search engines on the World Wide Web, but also con-
sider supermarkets that use loyalty cards to track what their customers buy.
More companies storing and analysing larger amounts of data means that an
increased amount of computing power is needed to satisfy the demand. At the
same time, computing and storage is moving from PCs to internet services and
so more centralised storage and computing power is required. Besides reasons of
scale and ease of management (such as centralised backups), there is also a large
economical reason: applications run at a lower cost per user, as servers may be
shared by many active users and many more inactive ones. Virtualisation is the
latest trend in this area. One can now acquire virtual servers, that scale with
the computing resources required (cloud computing). Many such virtual servers
can reside on the same physical server, providing low cost solutions.

However, data centres also come with new computational challenges. The
problem we will focus on in this paper is due to the dynamic nature of the
environment. Most processes behave in a very erratic way, switching from using
few resources to many and back.1 For example, consider a mail server. This
remains dormant until email arrives at which point it wakes up and processes
the email. One can have many dormant processes on a server, but only a limited
number of active ones. When too many are active, the response times decrease
and the service level goes down. This results in the appearance of an application
running slow and hence a�ects the user experience.

Similar concerns arise in cloud computing. Many small virtual servers can be
hosted on a single physical server, but when too many want to scale up simul-
taneously (whether in terms of CPU capacity, available memory, bandwidth or
otherwise) there is simply not enough room to accommodate all of them. Such
situations are currently dealt with through human operators. From their con-
trol room, they are able to see the characteristics of the servers (including the
current CPU load, memory and bandwidth consumption, and possibly including
factors such as power usage and temperature). When they recognise unwanted
patterns (e.g. a server being overloaded for a certain period) they will investi-
gate and manually solve the problem by moving processes around. The current
state-of-the-art support tools for data centre administrators (as, e.g. the Capac-
ityAnalyzer product of VKernel [2]) provide them not only with a monitoring
tool, but can also diagnose or even predict problems and bottlenecks, i.e. in-
dicate which servers are running critical . However, the tools do not provide a
recommendation as to which process should be moved, or whereto. The system
we describe in this paper is a comprehensive system, that

1. Acts as an early warning system for potential problems with the servers in
the data centre; and

1 For convenience, we will use the term �process� to refer to the particular objects that
we can reallocate between servers. These could be processes in the traditional sense,
but in di�erent circumstances, it could mean a complete virtual server consisting of
many traditional processes.

2. Proposes solutions in the event problems are indeed detected.

The problem naturally decomposes into two separate subproblems of (i) prob-
lem identi�cation and formulation and (ii) problem resolution. Correspondingly,
the proposed system uses two di�erent solution techniques, each most suited to
the particular subproblem. We will use a Business Rule Management System
(BRMS) to analyse the information stream that is provided by the monitoring
software. To this end, we de�ne in the BRMS the relationships between the dif-
ferent applications, processes and required resources. Using this information, the
BRMS can e�ciently track the state of the servers over time. By applying busi-
ness rules, it identi�es resource overloading situations and potential bottlenecks.
If there are any issues detected, we will formulate an appropriate resource reallo-
cation problem to be solved using Constraint Programming (CP). The purpose
of the CP formulation is to �nd a set of minimal changes to the current con�g-
uration in order to resolve the identi�ed problem. (For example, in the case of a
CPU overload, a busy application could be moved from the server to one with a
low level of CPU utilisation.) As di�erent types of data centres prefer di�erent
kinds of reallocations, the user can specify their objectives through the BRMS
and have them taken into account when generating the CSP.

A key contribution of our work is the fact that the CP formulation is automat-
ically derived through the rule engine. It puts the business specialists (i.e. data
centre operators) in charge of the workload re-con�guration process allowing
them to concentrate on what they want to achieve, instead of how this should
be achieved. Existing combinations of BRMS and optimisation (which we will
discuss in a later section) have used rules to provide the input to the optimi-
sation problem, and/or use rules to direct the search. In contrast, the entire
problem formulation is driven by the rules in our approach. The rules that are
triggered will add variables and constraints to the model, thus constructing it in
real-time, based on the actual, data centre-speci�c situation. A second contribu-
tion is derived from the integration of CP within Business Rules, which allows
people with no expert knowledge of optimisation in general, or CP in particular,
to express and change their problem simply through the rule editor. This makes
it easier for business analysts (to whom the modern business rules systems are
oriented) to maintain CP models.

The remainder of the paper is organised as follows. First, we provide a for-
mal problem speci�cation. Then, in Section 3, we detail the proposed solution.
Section 4 provides an experimental analysis of our approach. After discussing
related work, we draw conclusions in Section 6 and provide pointers for future
work.

2 Formal Problem Speci�cation

Our data centre consists of a set S = 〈s1, . . . , sn〉 of n servers. Depending on the
type of data centre, these servers can be used to provide computing power, data
storage, a combination of these, or any other purpose. This is of no consequence
to the model itself. Furthermore, there is a set P = 〈p1, . . . , pm〉 of processes. At

regular time intervals, a set of l sensors provide information on the processes,
e.g. their CPU load, the amount of memory required or energy consumption. A
function σti : P → R ∪ {⊥} , i ∈ [0, l] provides the output of a sensor for a given
time point and a given process, i.e. σti(p) equals the value measured by sensor i
at time t for the process p. If a process is not active at a certain time point t (e.g.
because it has �nished), the output of σti , i ∈ [0, l] is unde�ned, i.e. σti = ⊥. By
default, sensor 0 returns the server that the process is running on, i.e. σto(p) = j
i� p runs on sj at time t.

The total requirements placed on a server sj can be computed from the
processes running on that server as follows:

σti(sj) =
∑

{p |σt
0(p)=j}

σti(p) i ∈ [1, l]

We will use σt(s) = 〈σt0(s), . . . , σtl (s)〉 to denote the set of values of all sensors
for a given server at a particular time. We let Σ denote the set of all possible
combinations of sensor readings, i.e. σt(s) ∈ Σ.

To identify which servers are of interest, we introduce a classi�cation S of pos-
sible labels (for example, this could be equal to S = {critical,high,medium, low}).
We assume there is a function ∆ : S×Σz → S that, given a set of sensor readings
for the past z time steps, can give the state a server is in. In order to optimise
our solution, we introduce a cost function cost : S → R+ that, given a label,
returns a virtual cost value for that particular label.

Through the classi�cation of servers, we may identify that an unwanted situ-
ation has arisen. For example, we may �nd a number of servers that are classi�ed
as critical. To address this issue, we could move processes away from these servers
onto others. Thus, a solution is a reallocation of processes that brings the data
centre to an improved state. In terms of the model, we want to compute a set
{σt+1

o (p) | p ∈ P}.
There are a number of constraints that should hold for a solution. Firstly,

there is a maximum value maxi that we want to satisfy for each sensor σti(s) of
a server s. Secondly, some processes may never run together, i.e. be present on
the same server. To this end, there is a function incompatible : P → 2P that
given some process returns the list of all processes that cannot share the same
resources with that process.2 Finally, some processes may need a particular set
of servers. The function possible : P → 2S denotes the possible servers that a
process can run on. (Thus, possible(p) = S if there are no restrictions on p.)

The last aspect we introduce is a distance metric between servers. The func-
tion δ : S×S → R+ returns the distance between two servers. This could simply
be the physical distance, but is more likely to also take into account the network

2 A possible reason for such an incompatibility constraint may be that a critical ap-
plication is distributed over multiple servers to provide a level of fault tolerance. We
should then prevent that two instances of this application are running on the same
server, in order to guarantee the application is still available when the server crashes.
Security aspects are another typical example.

topology in the data centre. When moving processes, we want to minimise the
total distance of the processes that are moved. Note that, in general,

min
s∈S

cost(s) > max
s1,s2∈S

δ(s1, s2) (1)

That is, our �rst priority is in achieving acceptable levels for the states of the
servers, with minimum movements of secondary importance.3

The full problem statement can now be formalised as follows.

Given S = 〈s1, . . . , sn〉 servers
P = 〈p1, . . . pm〉 processes
σ0, . . . σt sensor readings, where σi = 〈σi0, . . . , σil〉

Find σt+1
o (p) for each p ∈ P

Subject to ∀p ∈ P · σt+1
i (p) = σti(p), i = [1, l]

∀s ∈ S · σt+1
i (s) ≤ max i

∀p ∈ P · σt+1
0 (p) ∈ possible(p)

∀p1, p2 ∈ P · p1 ∈ incompatible(p2) =⇒ σt+1
o (p1) 6= σt+1

0 (p2)

Minimising
∑
s∈S

cost(∆(s, σt+1(s), . . . σt+1−z(s)))

+
∑
p∈P

δ(σt0(p), σ
t+1
0 (p))

3 A Hybrid Approach

The problems naturally breaks down into three stages:

1. The identi�cation of servers which are at the di�erent risk levels;
2. The formulation of the re-distribution problem; and
3. Solving the generated problem to compute a new workload allocation with

as few changes as possible.

3.1 Stage 1a: Rules-Based Problem Identi�cation

The �rst stage relates to the implementation of the function ∆ that we intro-
duced in the previous section. The problem here is that this function may be
very complex due to the many conditions over time that need to be taken into
account. The biggest cause of this complexity is a desire for stability. It would
be too costly to reallocate processes each time a certain sensor reading is too
high and therefore, we need to establish a pattern emerging over time before we
decide to take action. There is a also a second issue: �exibility. This is desired
because not all variations of the problem are known ahead of time, and this

3 However, note that cost(s) might equal cost(s) = 0, in which case these states should
be disregarded in Equation 1.

Table 1. A simple rule set

event condition action

ε σ1 ≤ 100 set label = high

ε σ1 ≤ 90 set label = medium

ε σ1 ≤ 60 set label = low

allows a user to customise for their situation: the SLAs they have agreed with
users, standard procedures, etc.

Most data centres already use monitoring systems that provide performance,
resource utilisation and workload projection capabilities. The resource utilisation
data usually contains a number of samples taken over monitored time intervals
that range from 30 seconds to 30 minutes. This data indicates when and how
frequently di�erent utilisation spikes occur. Business rules are an ideal way to
formulate the process of analysing the monitoring data and de�ne spike frequen-
cies and overload thresholds.

For the purpose of this research, we consider a business rule to be a triplet
bχ = 〈e, c, a〉 [3], where χ is a list of variables, e describes an event that triggers
the rule, c describes a condition over χ that has to be met, and a speci�es the
action to perform. Rules are grouped in rule sets. When an event happens, the
rules in each applicable rule set B = {b1, . . . , br} are evaluated in order, starting
from b1, and identifying the actual values with the variables χ. Depending on
the strategy the BRMS employs, one or more of the matching rules is executed.
Executing multiple matching rules allows more speci�c conditions to override
generic ones. This is the strategy taken by our system.

By enumerating the di�erent cases described by ∆ we can capture the be-
haviour of ∆ in a rule set. The trigger event for each rule is the update in the
sensor readings; the condition describes the case to which it applies; and the
action speci�es the label that ∆ outputs for that particular case. For exam-
ple, consider the following very simple labeling function, with the number of
timesteps equal to z = 1, S = {high,medium, low}, and assuming σt1 ∈ [0, 100]
measures the CPU load in percentages:

∆(s, σ) =

low if σ1(s) ≤ 60

medium if 60 < σ1(s) ≤ 90

high if 90 < σ1(s) ≤ 100

This can be e�ciently represented using the rule set of Table 1, where ε denotes
an update to the sensor readings. More complicated functions can be represented
by rule sets in a similar fashion; for example di�erentiating between di�erent
days of the week or time of day, or di�erent kinds of processes. Given a proper
interface, such as can be provided by Excel (cf. Figure 1 below), the rules can be
de�ned and maintained by business analysts who understand the actual thresh-
olds for di�erent resource types for di�erent time periods. Thus, the rules can
be easily customised for di�erent (types of) data centres.

Table 2. The previous rule set extended

event condition action additional constraints

ε σ1(s) ≤ 100 set label = high post σt+1
1 (s) ≤ 70

ε σ1(s) ≤ 90 set label = medium

ε σ1(s) ≤ 60 set label = low

3.2 Stage 1b: Building the Optimisation Model

At the problem identi�cation stage we can also start to build the features of
the optimisation model in terms of the variables and constraints. Our solution
provides the facility to describe constraints within the Business Rules environ-
ment and to add them to a CP model. For example, we can extend the rules
in Table 1 with constraints on the utilisation of a server over the next period.
Again, let σ1 denote the CPU load, and assume that we want to constrain the
CPU load for servers with a high load to at most 70%. This can be re�ected in
the business rules by including a statement that adds (posts) a new constraint,
as shown in Table 2. These same rules, but now speci�ed in our Excel interface,
are shown in Figure 1. The developer view (the lightly coloured rows 4, 5 and 6)
is normally hidden from the user's view, i.e. the business analyst would only see
rows 7-10, and can manipulate the data there to re�ect their situation (including
the addition of rows to add more rules). The developer view shows how the rules
relate to the business objects (e.g. specifying how the �CPU load is less than�
condition is evaluated), and the e�ects on the business objects and the CSP. In
this case, for example, the e�ect on the CSP is the creation of a new variable and
the introduction of constraints on this variable, using the following Java snippet:

d.setMaxUtilisation(maximum);

Var [] appAssignments = d.getAppAssignments();

p.scalarProduct(appAssignments, p.getAppLoads()).le(maximum).post();

Notice also how the constraint variable is associated with the business object
(through the setBusinessObject() method), so that other rules (or other appli-
cations of this rule) can �nd this variable, if necessary.

Besides the posting of simple constraints, we can introduce a certain amount
of intelligence in the building of the model at this stage. As the number of servers
can be very large, we believe that we should have the facility to limit the number
of servers to consider in the solution. For example, we could limit ourselves to
only those servers that have a high load, and those that have capacity to spare
(e.g. those servers s for which σ1(s) ≤ 30). Again, the rules interface allows a
data centre administrator to specify this e�ciently.

3.3 Stage 2: Solving the Optimisation Model

With the number of servers totaling potentially a very high number, the problem
may quickly become intractable. Therefore, we propose that a smaller model can
be generated, depending on the size and nature of the problem de�ned by the

Fig. 1. The rule set of Table 2 speci�ed in Excel

rules. Our hypothesis is that a small problem will �nd better solutions within
the available time than a larger model, using the same search strategy.

To explore this hypothesis, we propose two models: a global one, and a lo-
calised one. In the �rst (global) model, we look at the state of all servers, identify
which servers require a reallocation of volumes and solve the resulting problem.

The second approach is described by the following two inter-leaving stages:

1. As each server is sequentially identi�ed as high risk using the rules de�nition,
a small local model is created to solve the problem, but within a restricted
set of servers that have spare capacity available; followed by

2. An optimisation stage which generates a new workload allocation with as
few changes as possible.

This approach is particularly relevant where the presence of high risk servers is
fairly sparse and there is the opportunity to create several small problems.

4 Experimental Results

Following discussions with a large data centre hardware provider, we generated
a set of benchmark problems to test our system with. The benchmark set focuses
on the management of storage servers. Such servers do not run any applications,
yet are dedicated to the storage and retrieval of information. Information is
stored on virtual disks (�volumes�) that may span many physical disks, even
across di�erent servers. Each volume has a list of applications that are using
that particular volume, and a list of I/O operations per application. Di�erent
volumes may occupy the same physical disk. Thus, the total amount of data that
is being transferred to/from a disk is determined by the activity of the di�erent
volumes on it. If several volumes with high transfer rates are stored on the same
disk, the disk is overloaded and response times drop. In such a case, we want to

Table 3. Classi�cation rules, σ1
1 , . . . , σ

z
1 are the last z values of the load sensors; I is

the interval between readings. For brevity, the event column is omitted, as is the Java
code generating the model

condition action

‖{σt
1|σ

t
1>45}‖
z

≥ 40 set label = medium

I ≥ 10 ∧ ∃i ∈ 1 . . . z · σi1 ≥ 60 set label = high

I < 10 ∧ ∃i ∈ 1 . . . z · σi1 ≥ 70 set label = high

I ≤ 15 ∧ ∃i ∈ 1 . . . z − 2 ·
[
σi1 ≥ 70 ∧ σi+1

1 ≥ 70 ∧ σi+2
1 ≥ 70

]
set label = very high

I ≥ 15 ∧ ∃i ∈ 1 . . . z − 1 ·
[
σi1 ≥ 70 ∧ σi+1

1 ≥ 70
]

set label = very high

I ≥ 30 ∧ ∃i ∈ 1 . . . z ·
[
σi1 ≥ 70

]
set label = very high

redistribute the volumes over the active disks in such a way as to alleviate any
bottle necks. Moving a volume is a costly operation, however, and so we want
to minimise the number of moves over time.

Due to the nature of the problem, a number of additional constraints are
present. These relate to the physical hardware that the systems employ. In par-
ticular, because of service level agreements that are in place, we can only move
(part of) a volume from one physical disk to another, if these disks are of the
same size, speed and type. Additionally, di�erent parts of a RAID volume cannot
share the same physical disk.4

Table 3 lists the rules that are used to classify the servers. Notice that the
interval at which sensors are read di�ers between systems. Therefore, the time
between sensor updates is included in the rules.

4.1 Description of the Benchmark Sets

Our benchmark set consists of 100 problem instances that were randomly gen-
erated from actual data. The problems have the following characteristics: we
consider a storage array with n disks, each of which is represented by a server
in our model. The array is used by 2n applications, where each application ai
requires space on between 1 and 3 disks (we say that the virtual disk for applica-
tion ai requires between 1 and 3 volumes). If application ai requires, say, space
on 2 disks, this gives rise to 2 processes in our model, a1i and a

2
i , that we have to

accommodate. For security reasons, these cannot be allocated on the same disk
(as they are part of the same RAID device). Therefore, an incompatible con-
straint is imposed over such sets of processes. Finally, only 4 applications can
use a disk at the same time due to space restrictions. To this end, we introduce
a sensor σsize that reports σtsize(p) = 25 for each time step t and each process p.
For any given server s, we require σsize(s) ≤ 100 for all time points. To reiterate,

4 A RAID con�guration (Redundant Array of Inexpensive Disks) allows data to be
divided and replicated among multiple hard drives to increase data reliability and/or
increase performance. These bene�ts are lost when the parts of the array ends up
on the same disk.

the disks in the storage array are represented by the servers in our model; the
volumes on those disks are represented by the processes running on the servers.
We assume unit distance between all disks, in e�ect minimising the total number
of changes we make to the allocation of applications to disks.

The values of the load sensors were chosen such that either 1/4th or 1/8th of the
disks is considered to have a high or very high load, and the goal of the system
is to achieve a maximum load of 60% for any given disk. As we speci�ed the
interval between sensor readings to be I = 15, this corresponds to ensuring that
none of the disks will be classi�ed as either high or very high when considering
just the next time point. For each combination of the total number of disks and
the number of overloaded ones, we generated 10 instances.

4.2 Models Considered

As indicated in Section 3.3, we consider two models. The �rst is a global model,
in which the full set of disks is taken into account. We will refer to this as the
�full� model. The other model, referred to as �iterative� considers each disk in
turn, and if the rules indicate that this disk is classi�ed as high or very high, we
create a small CSP to solve the reallocation problem for this disk. At �rst, this
CSP is created using the overloaded disk and all unclassi�ed disks (i.e. those
with a low level of load). However, if we fail to �nd a solution for this CSP, we
expand it to include all disks classi�ed as medium as well. In this manner, we
process all disks until they all have satisfactory load levels (or until we discover
we cannot �nd a solution to the problem).

Our hypothesis is that the larger (i.e. global) models su�er from scalability
issues (the full problem more so than the restricted one). The localised model is
not expected to su�er from such scalability issues, but does lead to lower quality
solutions: we expect to use more moves to rectify the situation.

4.3 Implementation

We used the ThinkSmart Technologies Intellify platform [4] to build our system.
Intellify is a Java platform that allows us to seamlessly integrate the OpenRules
BRMS [5] as well as various CP solver implementations. The results we present
here are obtained using the Constrainer [6] solver. We also have working ver-
sions using Choco [7] and an initial implementation of the forthcoming JSR-331
standard [8].

4.4 Results

The experimental data were generated using Java 1.6 on an Intel Core 2 Duo
P8700, running at 2.53 GHz and with 4 GB of memory available (although none
of the experiments required more than 512 MB). We allowed each experiment a
maximum of 15 minutes of CPU time (i.e. 900 seconds).

Figures 2 and 3 show the results of our experiments, taking the average of the
10 instances for each number of disks tested. Notice that the �gures represent

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100 120 140
 0

 10

 20

 30

 40

 50

 60

tim
e(

m
s)

nu
m

be
r

of
 c

ha
ng

es

number of disks

iterative time
full time

iterative changes
full changes

Fig. 2. Results with 12.5% of servers over loaded

both the CPU time required to solve the instance, as well as the quality of the
resulting solution (as measured in the number of moves). The two �gures show a
similar pattern: when the number of disks increases, solving the whole problem
as one quickly leads to performance issues, and we cannot prove that we have
found the optimal solution within 15 minutes. On the other hand, when we deal
with each overloaded disk in isolation (and �nding an optimal result during each
iteration), it takes less than 10 seconds for the largest of problems. Thus, this
part of our hypothesis is con�rmed by these experiments. A χ2 analysis shows
that this is a statistically signi�cant di�erence, as shown in Table 4.

The other part of our hypothesis stated that we expect to �nd that by solving
iteratively, we produce lower quality solutions, i.e. we require more changes to
achieve the desired load levels. Again, the �gures con�rm this hypothesis, as
does the χ2 analysis (cf. Table 4).

A closer examination of the results, shows exactly why this happens. When
we look at the overloaded disks in isolation, the only way to deal with the issue
of one of the disks being overloaded is to move at least 1 application away from
the disk, and replace it with another volume (either belonging to some other
application with a lighter load, or even an unused volume from another disk).5

Thus, 2 changes are required to deal with the issue. For example, consider 3 disks,

5 Notice that the volumes in an array are of the same size. Disks are broken up into as
many volumes of that size as possible (even if one or more of these will be unused)
and thus no disks will have spare capacity to accommodate an additional volume.
Hence, we always have to swap volumes.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100 120 140
 0

 10

 20

 30

 40

 50

 60

tim
e(

m
s)

nu
m

be
r

of
 c

ha
ng

es

number of disks

iterative time
full time

iterative changes
full changes

Fig. 3. Results with 25% of servers over loaded

d1, d2, and d3, each with two applications on them with loads: d1 = {40, 25},
d2 = {40, 25} and d3 = {10, 10}. Suppose we want to achieve a maximum load
of 60, and consider disk d1 before disk d2. The local problem generated to deal
with d1 consists of disks d1 and d3 (d2 is not considered, since it's overloaded).
It is straight-forward to see that we can achieve the objective by swapping the
application with load 25 with one of the applications from disk d3 (totaling 2
moves). The same holds when we consider d2, and we achieve a total of 4 moves.
Of course, in general, we may undo some of the moves we have made during
an earlier iteration in order to satisfy the load on other disks, so we expect to
see somewhere just under 2m changes given that there are m overloaded disks.
(This number is con�rmed by the graphs above.)

On the other hand, when we consider the solutions found when solving the
whole problem at once, we observe that often, load is transferred between over-
loaded disks as well. In our previous example, for example, we can achieve a
solution with only 3 moves: Move the application with load 40 from d1 to d3,
move the one with load 25 from d2 to d1 and move the one with load 10 from d3
to d2. This requires that load is transferred between overloaded disks. Having
a global view helps in detecting such situations, which explains the di�erence
between the two approaches.

5 Related Work

There are a few instances of research in the combination of rules and constraints.
Many of these works [9,10,11,12,13,14] relate to translating business rules into

Table 4. χ2 analysis of the results, counting the number of problem instances one
approach out-performs the other

1/4th overloaded 1/8th overloaded

CPU time Quality CPU time Quality

full model 4 41 7 33

iterative 46 0 43 0

χ2 35.28 41 25.92 33

p �0.01 �0.01 �0.01 �0.01

constraints and solving the problem with a single technology. This is not always
applicable since business rules on their own can be used to make decisions us-
ing a di�erent technology based on the RETE algorithm [15]. Perhaps closest
to the research presented here is the work by Bousonville et al. [16], who use
Business Rules to generate the data input to a prede�ned optimisation model.
In particular, they say, �we do not provide direct access to decision variables so
that only prede�ned constraints are possible�. This is quite in contrast to what
is demonstrated here. We indeed dynamically create constrained variables and
post additional constraints from within the business rules environment. Rules
are integral to solving the problem, not just as a pre-processor, but as an active
component.

LAURE [17] (and its successor CLAIRE [18]) is a system which allows the
use of rules to guide the optimisation search. Constraint Handling Rules (CHRs)
are a more general approach to solving CSPs using rules. An overview of CHR
approaches can be found in [19].

The automatic generation of dispatch rules (similar to business rules) for a
packaging problem [20] through a CP optimisation model shows another hybrid
con�guration. However, there is a loose coupling between the technologies. Here
an optimisation model, re�ecting the global demands over a time period, is used
to choose the parameters for a set of rules describing which task and which
packaging machine to consider next.

6 Conclusions and Future Work

In this paper, we describe a hybrid system that uses both a Business Rules
Management System and a Constraint Programming solver to solve resource
reallocation problems in large data centres. Such problems arise because the
applications assigned to a server �uctuate in their requirements for, e.g. CPU
power, memory, and bandwidth. When the demands on a server are larger than
what it can provide, the performance degrades, and a solution has to be found
through moving some of the workload to other servers.

In our solution, we use a BRMS to analyse the states of the servers over time.
Due to stability reasons, we only want to move applications when a pattern has
been established over several successive measurements, and the BRMS is used to
describe under which exact conditions servers are considered to be overloaded.

Once the BRMS has established that one or more servers are overloaded, the
rules that have �red are also used to construct a CSP corresponding to the
problem. This is a distinguishing feature of our approach, as heretofore rules
have only been used to setup parametrised models or to provide input to a CSP
model. In contrast, our system allows the rules to create and access directly
the variables and constraints in the CSP. This gives the rule administrator full
control over how the problem is generated and solved, hence allowing the solution
to be customised to the speci�c circumstances in their data centre.

The combination of Business Rules and CP is a powerful approach to the
problem. For Business Rules, �nding an optimal solution is problematic and
could conceivably lead to many rules which are di�cult to maintain. For Con-
straint Programming, the creation of the instance of the problem model would
require much programming, and small changes to the underlying logic would
require reprogramming that part of the solution. By passing each challenge to
a di�erent technology and linking them together at a low level delivers a fast,
easily maintainable solution.

We have tested the system using data from a large data storage centre. The
results show that while achieving optimal solutions is impractical for large prob-
lems (due to the time involved in constructing those optimal solutions), we are
able to solve the problem within seconds by iteratively dealing with each over-
loaded resource in turn. However, this comes at a price, as the quality of the
solution found is lower.

There are several areas for improvement to the current system. First of all, we
want to examine the trade-o� between solving iteratively and solving the problem
as a whole. We identi�ed speci�c conditions that improve the solution quality
when solving the full problem (i.e. moving applications between overloaded disks
in addition to the moving of applications between overloaded disks and those that
are not overloaded that happens in the iterative solution strategy). By solving
slightly larger problems, we may be able to achieve the best of both. This could
even be set by a rule in the BRMS, allowing the data centre administrators to
make the trade-o� between solution quality and speed of achieving the solution.

Secondly, energy consumption is becoming a major issue for data centres.
For this reason, we want to introduce the ability to recommend shutting down
servers when not all servers are required, and vice versa, to recommend turn-
ing some additional servers on when there is a serious resource de�ciency. This
can be modeled already within the formal model of Section 2 (by introducing
all-consuming dummy processes that are bound to servers when they are not
available), but we have not explored this aspect using real data yet.

References

1. Barroso, L., Hölzle, U.: The datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis Lectures on Computer Architecture
4 (2009) 1�108

2. http://www.vkernel.com/

3. Herbst, H., Knolmayer, G., Myrach, T., Schlesinger, M.: The speci�cation of busi-
ness rules: A comparison of selected methodologies. In: Tools for the Information
System Life Cycle. (1994)

4. http://www.thinksmarttechnologies.com/

5. http://www.openrules.com/

6. http://www.constrainer.sourceforge.net/

7. http://www.emn.fr/z-info/choco-solver/

8. http://4c110.ucc.ie/cpstandards/index.php/en/standards/java/jsr-331

9. Kameshwaran, S., Narahari, Y., Rosa, C., Kulkarni, D., Tew, J.: Multiattribute
electronic procurement using goal programming. European Journal of Operational
Research 179 (2007) 518 � 536

10. Carlsson, M., Beldiceanu, N., Martin, J.: A geometric constraint over k-dimensional
objects and shapes subject to business rules. In: Proceedings of the 14th Inter-
national Conference on Principles and Practice of Constraint Programming (CP-
2008). (2008) 220 � 234

11. Fages, F., Martin, J.: From rules to constraint programs with the Rules2CP mod-
elling language. In: Recent Advances in Constraints. (2009)

12. Feldman, J., Korolov, A., Meshcheryakov, S., Shor, S.: Hybrid use of rule and
constraint engines (patent no: WO/2003/001322). (World Intellectual Property
Organisation)

13. Feldman, J., Freuder, E.: Integrating business rules and constraint programming
technologies for EDM. In: The 11th International Business Rules Forum and The
First EDM Summit. (2008)

14. O'Sullivan, B., Feldman, J.: Using hard and soft rules to de�ne and solve opti-
mization problems. In: The 12th International Business Rules Forum. (2009)

15. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Arti�cial Intelligence 19 (1982) 17�37

16. Bousonville, T., Focacci, F., Pape, C.L., Nuijten, W., Paulin, F., Puget, J.F.,
Robert, A., Sadeghin, A.: Integration of rules and optimization in plant powerops.
In: Proceedings of the 11th International Conference on Principles and Practice of
Constraint Programming. (2005) 1�15

17. Caseau, Y., Koppstein, P.: A cooperative-architecture expert system for solving
large time/travel assignment problems. In: Proceedings of the International Con-
ference on Database and Expert Systems Applications. (1992) 197�202

18. Caseau, Y., Laburthe, F.: CLAIRE: Combining objects and rules for problem
solving. In: Proceedings of the JICSLP'96 Workshop on multi-paradigm logic
programming. (1996)

19. Sneyers, J., van Weert, P., Schrijvers, T., de Koninck, L.: As time goes by: Con-
straint handling rules, a survey of chr research from 1998 to 2007. Theory and
practice of logic programming 10 (2010) 1�48

20. van der Krogt, R., Little, J.: Optimising machine selection rules for sequence de-
pendent setups with an application to cartoning. In: Proceedings of the 13th IFAC
Symposium on Information Control Problems in Manufacturing. (2009) 1148�1153

