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What is a Constraint Satisfaction Problem?

Example
variables and domains x1 ∈ {1, 2}

x2 ∈ {0, 1, 2, 3}
x3 ∈ {2, 3}

constraints x1 > x2
x1 + x2 = x3
alldifferent(x1, x2, x3)

Solution
By backtrack search and constraint propagation: x1 = 2, x2 = 1, x3 = 3
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What happens when there are no solutions?

In practice, problems often have no solutions
variables and domains x1 ∈ {1, 2}

x2 ∈ {2, 3}
x3 ∈ {2, 3}

constraints x1 > x2
x1 + x2 = x3

Solution
There is no solution. Which is hardly useful in practice.
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Some non-solutions might be regarded as reasonable

x1 x2 x3 comment
1 2 2 all constraints violated
1 2 3 first constraint violated only (minimum violation)
1 3 2 all constraints violated
1 3 3 all constraints violated
2 2 2 all constraints violated
2 2 3 all constraints violated
2 3 2 all constraints violated
2 3 3 all constraints violated
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Back to the real-world....

This trivial example can be transferred to a real-world problem
A rules-based loan origination system rejects a student request for
$30K loan instead of relaxing its hard rules and offering a $29.3K loan
to the same student.

From Rules to Constraints
While BR methodologies do not offer a practical solution, we may look
at the Constraint Programming (CP) that has an extensive experience
in dealing with real-life over-constrained problems
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Soft Constraints as Hard Optimisation Constraints [10]

Cost-based approach [8]
Introduce a cost variable for each soft constraint
This variable represents some violation measure of the constraint
Optimize aggregation of all cost variables (e.g., their sum, or max)

In this way:
Soft global constraints become hard optimization constraints
The cost variables (z1 and z2) can be used in (meta-)constraints,
e.g. (z1 > 0) =⇒ (z2 = 0)
Example: if a nurse worked extra hours in the evening she cannot
work next morning
We can apply classical constraint programming solvers
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Example of a measured constraint violation [10]

Example
x ∈ [9000, 10000]
y ∈ [0, 20000]
x ≤ y

Let’s make the constraint x ≤ y soft by introducing a ‘cost’ variable
z ∈ [0, 5] that represents the amount of violation, as the gap
between x and y.
Suppose that we impose z ∈ [0, 5].
By looking at the bounds of x and y, we can immediately deduce
that y ∈ [8995, 20000].
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BR and CP Integration

What are meta-constraints?
CP defines meta-constraints that convert soft constraints to hard
optimization constraints

How are they defined?
These meta-constraints are usually defined by subject-matter experts
(not programmers!) and thus can be expressed in business rules.

Integration
So, it is a natural to integrate BR and CP in a such way when:

BR define a problem (or sub-problems)
CP solves the problem
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Example “Balancing Financial Portfolio”

Example
The “target” portfolio is defined as a currently active set of rules that
directs a shape of every particular portfolio

Rules Violations
Fluctuation of stock prices makes stock allocation rules being almost
always “a little bit” violated

Objective
keep portfolio as close as possible to the “target” portfolio
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Example: Portfolio Management Rules
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Example: Softening the Rules
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Typical Scheduling Constraints

Example
Given set of activities, each with processing time, resource
consumption, earliest start time and latest end time, assign an
execution time to each activity so that a given resource does not
exceed its capacity
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Softening Scheduling Constraints

Violation measures
Number of late activities
Acceptable overcapacity of resource
Use of overtime
Overuse of skills
Worker preferences

Real-life soft scheduling constraints (LILCO examples)
Do not start new job less than x minutes before the end of the shift
Unavailability tolerance (the same person “CAN” be in two
different places at the same time)
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Technical Approaches from Constraint Programming

Quantitative strategies
We can define a constraint violation cost and optimize an aggregated
function defined on all cost variables.

Qualitative strategies
We can try to find explanations of conflicts or find a preferred
relaxation.
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Partial Constraint Satisfaction [3]
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Principles of Relaxation

We can relax a problem by:
Enlarging the domain of a
variable
Enlarging the set of values
allowed by a constraint
Remove a constraint
Remove a variable

Adding values is enough:
Add values to a domain
Add values to a constraint
Add all possible values to a
constraint
Add all possible values to a
domain
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Partial Constraint Satisfaction as Optimisation

Partial-order amongst problems
The partial-order defined over the set of problems is defined in terms
of the set of solutions to those problems. Specifically,
P1 ≤ P2 ≡ sols(P2) ⊆ sols(P1).

Minimise an Objective Function using Branch-and-Bound
Solution Subset – the number of solutions added.
Augmentation – the number of constraint augmentations.

Max-CSP – the number of constraints satisfied.
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Partial Constraint Satisfaction [3]

Buy a red shirt and augment the constraints so that it compatible
with sneakers and denims.
Solution: 〈red, sneakers, denims〉
Metrics:

I Solution subset distance = 1
I Augmentation distance = 3
I Max-CSP distance = 1
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Hierarchical CSP [2]

Approach
We associate a priority with each constraint, and compare
solutions using a comparator based on the constraints that are
satisfied.
Find solutions that satisfy the most important constraints.

Example
Hard constraints: Constraint between shirt and slacks.
Strong constraints: Constraint between shoes and slacks.
Weak constraints: Constraint between shirt and shoes.

Solutions
〈green, cordovans, gray〉, 〈white, sneakers, denims〉.
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Definition of the Hierarchical CSP

A constraint hierarchy is a (finite) multiset of constraints labelled
with a strength/priority.
Given a constraint hierarchy H =def {H0,H1, . . . ,Hk}, the set of
constraints in H0 are the hard constraints, and for each other level
Hi, its constraints are more important than those at any level j > i.
A solution to a constraint hierarchy H will consist of valuations for
variables in H, that satisfy best constraints in H respecting the
hierarchy.
Solutions are compared using a comparator
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An Example Comparator

Locally Better
A valuation θ is locally better that another valuation σ if, for each of the
constraints through some level k − 1, the error after applying θ is equal
to that after applying σ, and at level k the error is strictly less for at
least one constraint and less than or equal for all the rest.
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A HCSP Example

Example

Level Constraints
H0 required cel× 1.8 = fah− 32.0
H1 strong fah = 212
H2 weak cel = 0

Solving the problem
S(H0) = {. . . , 〈0, 32〉, 〈10, 50〉, 〈100, 212〉, . . .}

S = {〈100, 212〉}

The pair 〈100, 212〉 is locally-better wrt the other pairs in S(H0).
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Generalised Soft Constraints [1]

We can define soft constraint problems as 〈A,+,×,0,1〉 where:
A is the set of all possible ‘scores’ of our constraints: 0 and 1 are
the worst and best ‘scores’, respectively;
+ compares solutions, and × combines constraints
Examples:
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An industrial example

Example
In November 2003, a configuration client had the problem that
constraint propagation in their configurator was failing for a system
described by 300, 000 constraints.

How do we debug this?
There are 2300,000 possible causes, but in our example, only 8 of the
constraints were sufficient to produce the failure, but there are still
> 1039 combinations of possibilities.

After this talk you will know how to . . .

Identify these 8 constraints after only 270 consistency checks!

O’Sullivan and Feldman (4C, UCC) Hard and Soft Constraints BRForum 2009, Las Vegas 31 / 56



An industrial example

Example
In November 2003, a configuration client had the problem that
constraint propagation in their configurator was failing for a system
described by 300, 000 constraints.

How do we debug this?
There are 2300,000 possible causes, but in our example, only 8 of the
constraints were sufficient to produce the failure, but there are still
> 1039 combinations of possibilities.

After this talk you will know how to . . .

Identify these 8 constraints after only 270 consistency checks!

O’Sullivan and Feldman (4C, UCC) Hard and Soft Constraints BRForum 2009, Las Vegas 31 / 56



An industrial example

Example
In November 2003, a configuration client had the problem that
constraint propagation in their configurator was failing for a system
described by 300, 000 constraints.

How do we debug this?
There are 2300,000 possible causes, but in our example, only 8 of the
constraints were sufficient to produce the failure, but there are still
> 1039 combinations of possibilities.

After this talk you will know how to . . .

Identify these 8 constraints after only 270 consistency checks!

O’Sullivan and Feldman (4C, UCC) Hard and Soft Constraints BRForum 2009, Las Vegas 31 / 56



Where can I apply what I learn?

1 Product Configuration
2 Test Generation
3 Recommender Systems
4 Case-based Reasoning Systems
5 Knowledge-based Systems
6 Software Product Lines
7 Debugging
8 Can you think of any others?
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Classic Setting

Two Categories of Constraints
background constraints expressing the connections between the
components of the “product”, that cannot be removed
user constraints interactively stated by the user when deciding on
options (= a query)

Consistency
A set of constraints is consistent if it admits a solution.
The background constraints are assumed to be consistent.
The “solubility” of a set of constraints refers to the number of
solutions it is consistent with.
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Terminology

Explanations
Conflict: an inconsistent subset of U: show one cause of
inconsistency.
Relaxation: a consistent subset of U: show one possible way of
recovering from it

Optimality – sort of
A relaxation is maximal when no constraint can added while
remaining consistent.
A conflict is minimal when no constraint can be removed while
remaining inconsistent.
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Example explanation tasks

Configuration as a CSP
A “product” is fully
specified by some
constraints
Several options are
available to the user
The user expresses his
preferences as constraints

Explanations
When preferences conflict:

Conflict show a set of
conflicting
preferences

Relaxation show a set of
feasible
preferences
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Conflicts, Arguments, and Counterarguments (I)

Assumption
The propagation capability of a constraints solver can be described by
operator Π mapping a set of given constraints to a set of deduced
constraints. (e.g. arc consistency deduces constraints of form x 6= v)
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Conflicts, Arguments, and Counter-arguments (II)

Conflict
For given set of constraints X + background B:

Π-conflict: subset X of X such that Π(B ∪ X) contains an
inconsistency.
minimal Π-conflict: no proper subset is a conflict
preferred Π-conflict: culprits are chosen according to a total
order
global conflict: Π is complete (i.e. achieves global consistency)

Arguments and Counter-Arguments
(counter-)argument for φ: add ¬φ (φ) to B + find conflict
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Which Explanations?

Example
A customer wants station-wagon with options:

1 requirement r1: roof racks ($500)
2 requirement r2: CD-player ($500)
3 requirement r3: extra seat ($800)
4 requirement r4: metal color ($500)
5 requirement r5: luxury version ($2600)

Total budget for options is $3000

User requirements cannot be satisfied
Which requirements are in conflict?
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An Arbitary Explanation

Maintain explanations during propagation

r1 roof racks c ≥ 500 {r1}
r2 CD-player c ≥ 1000 {r1, r2}
r3 extra seat c ≥ 1800 {r1, r2, r3}
r4 metal color c ≥ 2300 {r1, r2, r3, r4}
r5 luxury version c ≥ 4900 {r1, r2, r3, r4, r5}
b total budget c ≤ 3000 {b}

failure {r1, r2, r3, r4, r5, b}

explanation: {r1, r2, r3, r4, r5, b}

This explanation is not minimal (irreducible)!
The user may retract constraints unnecessarily.
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Minimal Explanation

Some other propagation order

r4 metal color c ≥ 500 {r4}
r5 luxury version c ≥ 3100 {r4, r5}
b total budget c ≤ 3000 {b}

failure {r4, r5, b}

explanation: {r4, r5, b}

Minimal - Good!
The explanation is minimal, since any proper subset is consistent.
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Finding a Minimal Conflict

Example
Step Activated constraints Result Partial conflict
1. ρ1 no fail {}
2. ρ1 ρ2 no fail {}
3. ρ1 ρ2 ρ3 no fail {}
4. ρ1 ρ2 ρ3 ρ4 no fail {}
5. ρ1 ρ2 ρ3 ρ4 ρ5 fail {ρ5}
6. ρ5 no fail {ρ5}
7. ρ5 ρ1 fail {ρ1, ρ5}
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rePlayXplain: Detect culprit and replay

Modified example
Requested options 1,2,3,4,7 cost 100$ each; requested options 5,6,8
cost 800$ each; budget is 2200.

Add available constraints to CP Solver one after the other;
when failure (F) occurs new culprit is detected;
backtrack to initial state + add culprit there



QuickXplain: Detect culprit and divide

Divide conflict detection problem into 2 subproblems when culprit is
detected:

1 keep all constraint of first subproblem when solving second
subproblem;

2 add culprits of second subproblem when solving first subproblem.



Unnecessary Retractions

Use explanation for finding a solution
1 user submits requirements r1, . . . , r5 + b
2 response: failure due to {r4, r5, b}
3 user prefers luxury (r5) to metal color (r4), so removes r4

4 response: failure due to {r3, r5, b}
5 user prefers extra seats (r3) to luxury (r5), so removes r5

6 response: success

The retraction of r4 is no longer justified.
Can we avoid unnecessary retractions?
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Preferred Explanation

Again another propagation order

r3 metal color c ≥ 800 {r3}
r5 luxury version c ≥ 3300 {r3, r5}
b total budget c ≤ 3000 {b}

failure {r3, r5, b}

explanation: {r3, r5, b}

Explanation is preferred
Its worst element r5 can safely be retracted
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Preferences between Constraints [5]

Intuitive statements with simple semantics
preferences between constraints
prefer(luxury version, metal color)
prefer(extra seat, luxury version)

groups of constraints
I equipment contains requirements for roof racks, extra seat
I look contains requirements for metal color, seat material

preferences between groups
prefer(equipment, look)
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The Tasks

Overconstrained problem with preferences
background B

constraints C := {c1, . . . , cn}
preferences P between the ci’s

such that B ∪ C is inconsistent

The tasks
preferred relaxations
preferred explanations
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Intuition behind the Approach

Preferred Conflicts
We use a preference-guided algorithm that successively adds most
preferred constraints until they fail. It then backtracks and removes the
least preferred constraints if this preserves the failure.

Preferred Relaxations
We remove the least preferred constraints from an inconsistent set
until it is consistent.

Duality
Preferred conflicts explain why best elements cannot be added to
preferred relaxations.
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Algorithm QUICKXPLAIN [4]

Recursive decomposition à la QUICKSORT

1 If B is inconsistent then: LexXplain(cπ1 , . . . , cπn)(B) = ∅
2 If B is consistent and C is a singleton then:

LexXplain(cπ1 , . . . , cπn)(B) = C
3 If B is consistent and C has more than one element then split at k

1 let Ck := {cπ1 , . . . , cπk}
2 let E2 be LexXplain(cπk+1 , . . . , cπn)(B ∪ Ck)
3 let E1 be LexXplain(cπ1 , . . . , cπk )(B ∪ E2)
4 LexXplain(cπ1 , . . . , cπn)(B) = E1 ∪ E2
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Where to Split?

Effect
If a subproblem does not contain an element of the conflict then it can
be solved by a single consistency check, namely B ∪ Ck or B ∪ E2

Strategy
Choose subproblems of same size to exploit this effect in a best way

#Consistency Checks
Between log2

n
k + 2k and 2k · log2

n
k + 2k (for conflicts of size k)
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Consistency Checking

The cost of consistency checking
QUICKXPLAIN does multiple consistency checks that are NP-hard in
general, but

complexity is polynomial for tree-like CSPs
approximations possible: trade time and optimality
keep witnesses for success (= solution) and try them when adding
constraints
keep witnesses for failure (= critical search decisions) and try
them when removing constraints

Compilation helps in practice
Most problems in practice give small compiled forms.
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How to use QuickXplain
Background: effort is reduced by putting as many constraints as
possible in the initial background
Preference order: order of constraint uniquely characterizes the
conflict found
Consistency checker: time can be traded against minimality by
an incomplete consistency checker, giving “anytime” behaviour
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Applications of QuickXplain

Configuration: B2B, B2C find conflicts between user requests.
Constraint model debugging isolate failing parts of the constraint
model.
Rule verification find tests that make a rule never applicable.
Benders decomposition.
Diagnosis of ontologies.
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Take-Home Messages

Integration
Close integration between business rules and constraint programming
techniques is straightforward and meaningful.

Reasoning about Soft Constraints
There is a large body of work and software tools for reasoning about
soft constraints in a variety of quantitative and qualitative settings.

Perspectives
We can view the integration as a basis for optimisation, but also as a
basis for explanation generation.
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