
1

2

Java Constraint Programming

with JSR-331

Jacob Feldman, PhD
OpenRules Inc., CTO
jacobfeldman@openrules.com
www.openrules.com
www.4c.ucc.ie

EPICENTER 2010 DUBLIN

3 Copyright © 2010 OpenRules, Inc.

 Outline

 Introduction to Constraint Programming (CP)

JSR-331: oncoming Java CP API standard

 allow a user to switch between different CP Solvers
without changing a line in the application code

Examples of practical use of Constraint Programming
for Java-based decision support applications

 Demonstrate how CP gives Java developers unprecedented
power to define and solve complex constraint satisfaction
and optimization problems

 Integration of Constraint Solvers with Rule Engines and
Machine Learning tools

4 Copyright © 2010 OpenRules, Inc.

 Introduction to CP

Constraint Programming (CP) is a very powerful problem solving
paradigm with strong roots in Operation Research and AI:

 Handbook of Constraint Programming (Elsevier, 2006)

 Association for CP - http://slash.math.unipd.it/acp/

 Cork Constraint Computation Centre - http://www.4c.ucc.ie/

 CP is a proven optimization technology introduced to the business
application development at the beginning of 1990s

During the 90s ILOG Solver became the most popular optimization tool
that was widely used by commercial C++ developers. Being
implemented not as a specialized language but rather as an API for the
mainstream language of that time, ILOG Solver successfully built a
bridge between the academic and business worlds

Nowadays Optimization technology is quickly coming back to the
business application development world as an important component of
the Enterprise Decision Management (EDM)

5 Copyright © 2010 OpenRules, Inc.

 CP as Optimization Technology (taken from ILOG’s website)

Copyright, ILOG Inc.

 Optimization technology helps organizations make better plans
and schedules

 A model captures your complex planning or scheduling problem.
Then a mathematical engine applies the model to a scenario find
the best possible solution

 When optimization models are embedded in applications, planners
and operations managers can perform what-if analysis, and
compare scenarios

 Equipped with intelligent alternatives, you make better decisions,
dramatically improving operational efficiency

6 Copyright © 2010 OpenRules, Inc.

 Examples of Constraints

Constraints represent conditions which restrict our
freedom of decision making:

 The meeting must start no later than 3:30PM

 Glass components cannot be placed in the same bin with

copper components

 The job requires Joe or Jim but cannot use John

 Mary prefers not to work on Wednesday

 The portfolio cannot include more than 15% of technology

stocks unless it includes at least 7% of utility stocks

7 Copyright © 2010 OpenRules, Inc.

 CSP Example: Procedural Implementation in Java

There are 3 integers X, Y, Z defined from 0 to 10.
Constraints: X<Y and X+Y=Z. Find all feasible values of X, Y, and Z

 Simple Java Solution:

for(int x=0; x<11; x++)

 for(int y = 0; y<11; y++)

 for(int z=0; z<11; z++)

 if (x < y && z == x+y)

 System.out.println("X="+x+" Y="+y+" Z="+z);

 “Optimized” Java Solution:

for(int x=0; x<11; x++)

 for(int y = x+1; y<11; y++)

 if (x+y < 11)

 System.out.println("X="+x+" Y="+y+" Z="+(x+y));

What’s wrong with this “solution”?

 Readability, Extensibility, Performance,...

8 Copyright © 2010 OpenRules, Inc.

 CSP Example: Implementation with CP

 Simple Solution with Java CP API (JSR-331):

// Problem Definition

Problem problem = new Problem(“XYZ");

Var x = problem.var("X", 0, 10);

Var y = problem.var("Y", 0, 10);

Var z = problem.var("Z", 0, 10);

x.lt(y).post(); // X < Y

x.add(y).eq(z).post(); // X + Y = Z

// Problem Resolution

Solution[] solutions = problem.getSolver().findAllSolutions();

for(Solution solution : solutions)

 solution.log();

9 Copyright © 2010 OpenRules, Inc.

 How the constraint “X < Y” works

Let’s assume X and Y are defined on the domain [0,10]

Initial constraint propagation after posting X<Y constraint:

X[0;9]

Y[1;10]

Changes in X cause the changes in Y

X>3 => Y > 4

Changes in Y cause the changes in X

Y<=8 => X<=7

Bi-Directional constraint propagation

X Y

10 Copyright © 2010 OpenRules, Inc.

Constraint Satisfaction Problem - CSP

 CP clearly separates “What” from “How”

 Problem Definition (WHAT):

 Constrained Variables with all possible values

 Integer, Boolean, Real, and Set variables

 Constraints on the variables

 Basic arithmetic and logical constraints and expressions

 Global constraints (AllDifferent, Cardinality, ElementAt, …)

 Problem Resolution (HOW):

 Find Solution(s) that defines a value for each variable such that
all constraints are satisfied

 Find a feasible solution

 Find an optimal solution

 Find (iterate through) all solutions

 Search Strategies

11

 Constraint Satisfaction Environment

Predefined classes for Constrained Variables, Constraints, and

Search Strategies

Domain representations for major constrained objects

Generic reversible environment

 “Try/Fail/Backtrack” capabilities

Powerful customizable event management mechanism

Constraints use events to control states of all constrained objects

Constraint propagation mechanisms

Ability to create problem-specific constraints and search

strategies

12 Copyright © 2010 OpenRules, Inc.

 Constraint Programming:
a bridge between academia and biz

CP is especially successful dealing with real-world scheduling, resource
allocation, and complex configuration problems:

 CP clearly separates problem definition from problem resolution bringing
declarative programming to the real-world

 CP made different optimization techniques handily available to normal
software developers (without PhDs in Operation Research)

A few real world CP application examples from my consulting practice:

 Financial Portfolio Balancing for a Wall Street Wealth Management System

 Grain Train Scheduling for a Canadian R/R company

 Truck Loading and Routing system

 Data Centre Capacity Management

 Workforce/Workload Scheduling system for a Utility company

13

 Real-world example: Workforce/Workload Management

 Field Service Scheduling for the Long Island Gas and

Electric Utility

More than 1 million customers in Long Island, NY

More than 5000 employees

Service territory 1,230 square miles

Hundreds jobs per day

Job requires a mix of people skills, vehicles and equipment

 Multi-objective Work Planning and Scheduling:

Travel time minimization

Resource load levelization

Skill utilization (use the least costly skills/equipment)

Schedule jobs ASAP

Honor user-defined preferences

14 Copyright © 2010 OpenRules, Inc.

Some Popular CP Tools

CP Modeling Languages

 ILOG OPL from IBM ILOG (www.ilog.com)

 MiniZinc from G12 group, Australia (http://www.g12.cs.mu.oz.au)

 Comet, Brown University (www.dynadec.com)

 Prolog (ECLiPSe, SICStus)

C++ API

 ILOG CP – Commercial from IBM ILOG

 Gecode – Open Source (www.gecode.org)

Java API

 Choco - Open Source

 ILOG JSolver – Commercial

 Constrainer - Open Source

20+ other CP Solvers: http://slash.math.unipd.it/cp/

 CP Solvers are usually well integrated with other optimization tools (LP, MIP)

15 Copyright © 2010 OpenRules, Inc.

JSR-331 – Java Specification Request

JSR-331 - Java Constraint Programming API
under the roof of the Java Community Process
www.jcp.org

JSR-331 covers key concepts and design
decisions related to the standard representation
and resolution of constraint satisfaction and
optimization problems

JSR-331 Early Draft is now available for public
review www.cpstandards.org

16 Copyright © 2010 OpenRules, Inc.

Make Constraint Programming more accessible for
business software developers

Allow a Java business application developer to easily
switch between different solver implementations
without any(!) changes in the application code

Assist CP vendors in creating practical JSR-331
implementations

Key Standardization Objectives Key Standardization Objectives

17 Copyright © 2010 OpenRules, Inc.

CP Standardization Perspective

Business World

CP World

T

I

E

R

.

1

T

I

E

R

.

3

T

I

E

R

.

2

CP Interfaces

Top-Down View

Bottom-Up View

Standard is Oriented to
Application Developers

yet allowing CP Vendors to
provide their own
implementations

18 Copyright © 2010 OpenRules, Inc.

JSR-331 Architecture

javax.constraints

javax.constraints.impl

javax.constraints.impl

19 Copyright © 2010 OpenRules, Inc.

A map-coloring problem involves choosing colors for
the countries on a map in such a way that at most 4
colors are used and no two neighboring countries have
the same color

We will consider six countries: Belgium, Denmark,
France, Germany, Netherlands, and Luxembourg

The colors are red, green, blue, yellow

CSP Example: “Map Coloring”

France

Germany

Denmark

Netherlands

Belgium

Lux.

20 Copyright © 2010 OpenRules, Inc.

 static final String[] colors = { "red", "green", "blue", "yellow" };

Problem p = new Problem("Map-coloring");
// Define Variables
Var Belgium = p.var("Belgium“,0, 3);
Var Denmark = p.var("Denmark“,0, 3);
Var France = p.var("France“,0, 3);
Var Germany = p.var("Germany“,0, 3);
Var Netherlands = p.var("Netherlands“,0, 3);
Var Luxemburg = p.var("Luxemburg“,0, 3);

Example “Map Coloring”: problem variables

Each country is represented as

a variable that corresponds to

an unknown color: 0,1,2, or 3

21 Copyright © 2010 OpenRules, Inc.

// Define Constraints

France.neq(Belgium).post();
France.neq(Luxemburg).post();
France.neq(Germany).post();
Luxemburg.neq(Germany).post();
Luxemburg.neq(Belgium).post();
Belgium.neq(Netherlands).post();
Belgium.neq(Germany).post();
Germany.neq(Netherlands).post();
Germany.neq(Denmark).post();

“Map Coloring”: problem constraints

France

Germany

Denmark

Netherlands

Belgium

Lux.

// We actually create a constraint and then post it
Constraint c = Germany.neq(Denmark);
c.post();

22 Copyright © 2010 OpenRules, Inc.

// Solve

Goal goal = p.goalGenerate();
Solution solution = p.getSolved().findSolution();
if (solution != null) {
 for (int i = 0; i < p.getVars().length; i++) {
 Var var = p.getVars()[i];
 p.log(var.getName() + " - " + colors[var.getValue()]);
 }
}

// Solution:
Belgium – red
Denmark – red
France – green
Germany – blue
Netherlands – green
Luxemburg - yellow

“Map Coloring”: solution search

France

Germany

Denmark

Netherlands

Belgium

Lux.

23 Copyright © 2010 OpenRules, Inc.

In real-world many problems are over-constrained. If
this is a case, we may want to find a solution that
minimizes the total constraint violation

Consider a map coloring problem when there are no
enough colors, e.g. only three colors:

 Coloring violations may have different importance
for France – Belgium and France – Germany

 Find a solution that minimizes total constraint
violations

23

Over-Constrained Problems

24 Copyright © 2010 OpenRules, Inc.

Constraint “softening” rules:

 Coloring constraint violations have different
importance on the scale 0-9999:

Luxemburg– Germany (9043)

France – Luxemburg (257)

Luxemburg – Belgium (568)

We want to find a solution that minimizes the total
constraint violation

24

Over-Constrained Map Coloring Problem

25 Copyright © 2010 OpenRules, Inc.

// Hard Constraints

France.neq(Belgium).post();
France.neq(Germany).post();
Belgium.neq(Netherlands).post();
Belgium.neq(Germany).post();
Germany.neq(Denmark).post();
Germany.neq(Netherlands).post();

// Soft Constraints

Var[] weightVars = {

 Luxemburg.eq(Germany).asBool().mul(9043),

 France.eq(Luxemburg).asBool().mul(257),

 Luxemburg.eq(Belgium).asBool().mul(568)

};

Var weightedSum = p.sum(weightVars);

25

Map Coloring with Hard and Soft Constraints

Luxemburg – Germany (9043)

France – Luxemburg (257)

Luxemburg – Belgium (568)

26 Copyright © 2010 OpenRules, Inc.

// Optimal Solution Search

Solution solution = p.getSolver().getOptimalSolution(weightedSum);

if (solution == null)

p.log("No solutions found");

else

 solution.log();

26

Minimize Total Constraint Violations

Solution:

Belgium[0] Denmark[0] France[1] Germany[2] Netherlands[1] Luxemburg[1]

France

Germany

Denmark

Netherlands

Belgium

Lux.

27 Copyright © 2010 OpenRules, Inc.

 Solving Scheduling and Resource Allocation Problems

Scheduling problems usually deals with:

 Activities with yet unknown start times and known durations
(not always)

 Resources with limited capacities varying over time

 Constraints:

 Between activities (e.g. Job2 starts after the end of Job1)

 Between activities and resources (e.g. Job1 requires a welder,
where Jim and Joe both have a welder skills)

There are multiple scheduling objectives (e.g. minimize
the makespan, utilize resources, etc.)

28 Copyright © 2010 OpenRules, Inc.

 How we may create a CP-based Scheduler?

Scheduler

Activity

Activity

Activity

Resource

Resource

Resource

Precedence

Constraints:

“starts after”

“starts before”

“starts at”

“and before”..

Resource

Constraints:

“requires”

“consumes”

“produces”

“provides”
• Var start

• Var duration

• Var end

 Capacity

 time

 Var
 Var Var

 V
a

r

 V
a

r

 V
a

r

 Capacity Timetable
// Alternative resource requirements

activity1.requires(resource2, varReq2).post();

activity1.requires(resource3, varReq3).post();

varReq2.ne(varReq3).post();

29 Copyright © 2010 OpenRules, Inc.

 Scheduling Sample

30 Copyright © 2010 OpenRules, Inc.

 Scheduling Sample Implementation

Problem problem = new Problem("Oven Scheduling Example");

Schedule schedule = problem.addSchedule(0, 11);

Activity A = schedule.addActivity(1, "A");

Activity B = schedule.addActivity(4, "B");

Activity C = schedule.addActivity(4, "C");

Activity D = schedule.addActivity(2, "D");

Activity E = schedule.addActivity(4, "E");

Resource oven = schedule.addResource(3, "oven");

oven.setCapacityMax(0, 2);

oven.setCapacityMax(1, 1);

oven.setCapacityMax(2, 0);

oven.setCapacityMax(3, 1);

oven.setCapacityMax(4, 1);

oven.setCapacityMax(10, 1);

// Resource Constraints

A.requires(oven, 2).post();

B.requires(oven, 1).post();

C.requires(oven, 1).post();

D.requires(oven, 1).post();

E.requires(oven, 2).post();

// Find Solution

schedule.scheduleActivities();

schedule.displayActivities();

SOLUTION:

A[5 -- 1 --> 6) requires oven[2]

B[3 -- 4 --> 7) requires oven[1]

C[7 -- 4 --> 11) requires oven[1]

D[0 -- 2 --> 2) requires oven[1]

E[6 -- 4 --> 10) requires oven[2]

31 Copyright © 2010 OpenRules, Inc.

 BR+CP Integration

Business Rules could be used to define and modify business
objects

Rule Engine can generate a related constraint satisfaction
problem/subproblem representing it in terms of constrained
variables and constraints

CP Solver can solve the optimization problems and return the
results to the Rules Engine for further analysis

Business Problem Business Problem Constraint Satisfaction Problem

32 Copyright © 2010 OpenRules, Inc.

Notorious CSP “SUDOKU”

33 Copyright © 2010 OpenRules, Inc.

 Sudoku Constraints in OpenRules Excel Rules Table

34 Copyright © 2010 OpenRules, Inc.

Online Decision Support:
modeling and solving constraint satisfaction problems

Typical Online Systems with CP-based Solvers:

 Online Reservation systems (hotels, tours, vacations, ..)

 Event Scheduling (both business and personal events in social networks)

 Field Service Scheduling, Advertisement Scheduling, and more

Traditional Approach:

 “Fat” Problem Solver tuned for all possible problem states

 Complexity grows over time – hard to create and maintain

CSP

(New State)

CSP

(Current State)

New

Change Request

Solver
(“universal” model and

search strategy)

IT Guru

35 Copyright © 2010 OpenRules, Inc.

Online Decision Support: CP + BR
adding Rule Engine to find the “best” strategy

CSP

(New State)

CSP

(Current State)

New

Change Request

Selected

Model & Strategy

State Analysis

and Strategy

Selection

Rules

 Predefined Models

and Strategies

IT Guru

Business

Analysts

CP Solver
(the “best” strategy)

Rule Engine

CP

BR

36 Copyright © 2010 OpenRules, Inc.

Online Decision Support: CP + BR + ML
adding Rule Learner to find the “best” strategy

CSP

(New State)

CSP

(Current State)

Rule Engine
 Predefined Models

and Strategies

CP Solver

(the “best” strategy)
New

Change Request

Rule Learner
Historical

CSP

States

State

Analyzer

CP

BR

ML

Selected

Model & Strategy

State Analysis

and Strategy

Selection

Rules

Positive &

Negative

Samples

37 Copyright © 2010 OpenRules, Inc.

Summary

Constraint Programming empowers application developers with
sophisticated decision-support (optimization) capabilities

Proven CP + BR methodology and supporting open source and
commercial tools are available in a vendor-neutral way (JSR-331)

Online decision support may be done with

 CP or BR only: Hard to create and maintain “fat” Solvers controlled by IT

 CP + BR: Rule Engine recommends a CSP model and search strategy based on

business rules controlled by business analysts

 CP + BR + ML: Rule Learner discovers model/strategy selection rules based

on historical Solver runs – “Ever-learning” decision support!

38 Copyright © 2010 OpenRules, Inc.

 Q & A jacobfeldman@openrules.com

