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Using Machine Learning, Business Rules, and
Optimization for Flash Sale Pricing

Igor Elbert, Distinguished Data Scientist, Gilt.com
Dr. Jacob Feldman, CTO, OpenRules, Inc.
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Building a Pricing System for an Online Retailer

* GILT:

— Online retailer selling curated collections of
fashion products via flash sales

* Expected Functionality:

— Utilize sales history to predict demand for ever-
changing assortments of thousands of products

— Collaborate with business domain experts to
quickly generate optimal prices that can
immediately go live on site




Applied Technology

A combination of Machine Learning, Business
Rules, and Multi-Objective Optimization:
— Predictive Analytics
* R, xgboost
— Business Rules
* OpenRules
— Optimization

* OpenRules/JSR-331 with various linear solvers



Before Gilt — sample sales




Gilt pioneered online “flash sales” in US
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LIFESTYLE MARKETING PLATFORM

Gilt is a members-only lifestyle destination and ecommerce site that provides insider access
to today’s top designer brands as well as exclusive local experiences.




GIL'T

Global Reach

9.7M+

active members

400

7K+

packages shipped daily

100

countries shipped to

1M+

active mobile app users*

50%

of revenue is generated via
mobile purchases

1B+

highest press impressions
from a single partnership**

1.5M+

social media followers

*Gilt for iPhon
**Michael Bastian x Hewlett-Packard



'e3avsl How to price thousands of items every day?




OBJECTIVES

* Predict demand for every product in a given
sale for all possible prices

* Find the best combination of prices to satisfy
business objectives (weighted mix of revenue,
margin, sell-through, etc)

* Present price recommendations to business
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How it’s done
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1. Data Preparation

Category

Product
Performance

Material

Attributes

Discount

Sale
Attributes

Single/Multi

Data Set
For Predictions
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2. Demand Prediction

Example: Predicted Demand and Revenue at different Prices
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3. Price Optimization

* Goals:
- optimize per product and per sale
- allow business user to set goals (revenue,
sell-through, margin, or combination)

* |terate quickly
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Sample Rules

Minimal Number of Previous

Variable
Exposures

Is 0 Minimum Discount
from MSRP

Is 0 Percent Difference
from Original Price

Is 0 Minimal Margin
Percent

Is 0 Minimal Sell
Through Percent

Is 1 Minimum Discount
from MSRP

Is 1 Percent Difference
from Original Price

Is 1 Minimal Margin
Percent

Is 1 Minimal Sell

Through Percent

<oper>

20

40

40

20

20

40

30

Initial Sales

Repeat Sales
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Optimization Weights

Variable

Gross Revenue Weight
Gross Margin Weight

Gross Sell Through Weight

Sample Results For A Sale:

Max Margin $4,289 67% 16%
Max Sell-through S5,628 48% 24%
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'S iVl Per sale optimization

Best predictors of demand (number of units sold):
* Number of units available

* Price, Discount, MSRP

* |tem price relative to the prices of other items in the sale

Product attributes, etc

Prediction changes:
Before: predict demand for all acceptable prices
Now: same as before but for all possible totals
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Example

GIL'T

Prices: S2 or S4

/ Prices: $1 or $3

Price total: S3 - S7
- Apply constraints early
- Calculate all the totals
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Ball
Ball
Ball
Pen
Pen
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Pen
Pen
Pen
Pen
Pen

Pen
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Multiple Knapsack Problem / Bin-packing problem

e All items must be priced
* Each item must have only one price

e Sum of all prices should equal to one and only one total
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el Al Problem definition (MathProg)

set Look := Ball Pen;
set Look; param: Look_Price_Total: demand :=
set Price :=1..10000; Ball 2 3 4
set Total := 1..100000; Ball 2 4 4
Ball 2 5 4
set Look_Price_Total within {l in Look, p in Price, t in Total}; Ball 2 6 3
param price {(I,p,t) in Look_ Price_Total}, >=0, integer := p; 2::: i ; 2
param demand {Look_Price_Total}, >= 0, integer; Bal 4 4 2
param revenue{(l,p,t) in Look_Price_Total} := pricell,p,t] * demand[l,p,t]; Ball 4 5 2
Ball 4 6 2
param orig_price {Look_Price_Total}, >= 0, integer, default O; Bal 4 7 2
param base_price {Look_Price_Total}, >= 0, integer, default 0; Pen 137
param msrp_price {Look_Price_Total}, >= 0, integer, default O; EZ: 1 : ;
param num_units_available {Look_Price_Total}, >= 0, integer, default O; Pen 1 6 8
Pen 1 7 8
set Unique_Total := setof{(l,p,t) in Look_Price_Total} t; Pen 3 31
Pen 3 41
var Use {Look_Price_Total} binary; Ee“ 2 Z 1
. . en
var Use_Total {Unique_Total} binary; Pen 3 7 0

maximize Revenue: sum{(l,p,t) in Look_Price_Total} revenue[l,p,t] * Use[l,p,t];

s.t. one_of each{l in Look}: sum{(l,p,t) in Look_Price_Total} Use[l,p,t] = 1;
s.t. single_total: sum{t in Unique_Total} Use_Total[t] = 1;
s.t. price_sum_is_total{t in Unique_Total}:
sum{(l,p,t) in Look_Price_Total} price[l,p,t] * Use[l,p,t] =t * Use_Total[t];



Modeling and Solving Real-world Problems

We modeled the problem using OpenRules and JSR-331
Standard

Real optimization problems consist of hundreds of thousands
records:

* We used JSR-331 Constraint Solvers to validate the problem
correctness. But actual problems were too large for constraint
solvers

 We tried various JSR-331 Linear Solvers (GLPK, LP-Solve, COIN
suite, SCIP, and others)

* None was able to solve large problems in a reasonable time or at
all



How We Solved the Production Problem

 OpenRules was able to create a rules-based decision model
that automatically splits one large problem into a set of
smaller sub-problems (one for every individual total cost)

* While there may be thousands of sub-problems, JSR-331
Linear Solvers are able to quickly solve them

 Then OpenRules decision model analyzes all found solutions
to come up with the optimal solution that satisfy a
configurable combined objective — a maximal combination of
Revenue, Margin, and Sell-Through

* Big advantage of this approach: it can be parallelized to solve
even much larger problems!
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i Conclusion

* We applied a combination of Machine Learning, Business
Rules, and Multi-Objective Optimization to solve a real-
world operational problem — flash sale price optimization

* The pricing methodology and tools that support each of
these 3 decision management techniques were readily
available and quite powerful

 However, the production-level problems required a
special ingenious approach to actually solve these
problems




Questions?

lgor Elbert GILT
ielbert@gilt.com

Jacob Feldman gLFJ)Lf%EhSJ

jacobfeldman@openrules.com

o S~y B <2 m e e ~ e N
- - Y P s (o MEF B TR e - NPT AL ¥ .
BT it A —i 3 ] =5y B3 R AT T 2% g e
"' e e A AN Y


mailto:ielbert@gilt.com
mailto:jacobfeldman@openrules.com

