
Using Machine Learning, Business Rules, and 
Optimization for Flash Sale Pricing 

 

Igor Elbert, Distinguished Data Scientist, Gilt.com 
Dr. Jacob Feldman, CTO, OpenRules, Inc. 

1 



Building a Pricing System for an Online Retailer 

• GILT: 

– Online retailer selling curated collections of 
fashion products via flash sales 

• Expected Functionality:  

– Utilize sales history to predict demand for ever-
changing assortments of thousands of products  

– Collaborate with business domain experts to 
quickly generate optimal prices that can 
immediately go live on site 

2 



Applied Technology 

• A combination of Machine Learning, Business 
Rules, and Multi-Objective Optimization: 

– Predictive Analytics  

• R, xgboost 

– Business Rules 

• OpenRules  

– Optimization   

• OpenRules/JSR-331 with various linear solvers 

 

3 



Before Gilt – sample sales 

4 



Gilt pioneered online “flash sales” in US  

5 



LIFESTYLE MARKETING PLATFORM 

Gilt is a members-only lifestyle destination and ecommerce site that provides insider access 

to today’s top designer brands as well as exclusive local experiences. 

INTERNATIONAL 

6 

WOMEN MEN BABY & KIDS 

HOME GILT CITY 



9.7M+ 
active members 
 

7K+ 
packages shipped daily 
 

1M+ 
active mobile app users* 

1B+ 
highest press impressions 
from a single partnership** 

400 
sales launch weekly 
 

100 
countries shipped to 

50% 
of revenue is generated via 
mobile purchases 

1.5M+ 
social media followers 

Global Reach 

7 
*Gilt for iPhone, iPad & Android   
**Michael Bastian x Hewlett-Packard 

400 
sales launch weekly 
 



How to price thousands of items every day? 

SUPPLY DEMAND 

8 



OBJECTIVES 

• Predict demand for every product in a given 
sale for all possible prices 

 

• Find the best combination of prices to satisfy 
business objectives (weighted mix of revenue, 
margin, sell-through, etc) 

 

• Present price recommendations to business 

9 



How it’s done 

1. 
Data Prep
  

2. 
Demand 

Prediction 

3. 
Price 

Optimization 

4. 
Result 

validation 

10 



12 

O
p

er
at

io
n

al
 D

B
 

 
Data Warehouse 

 
 
 
 
 
 
 
 
 
 
 
 
 

  Aster, 
  SQL, 
  Map/Reduce 

 
 

Training Data 
(known demand) 

Future Data 
(unknown demand) 

BR 

Data Prep  Demand Prediction 

Build Model 
 
R,  xgboost 

 ML Tr
an

sf
o

rm
 

D
at

a 
Tr

an
sf

o
rm

 
D

at
a 

Predict Demand 
 
R,  xgboost 

 ML 

Priorities, 
constraints 

Generate All 
Possible Prices and 

Totals 
 

R 
Opt 

Model Optimize 
(Find the ‘best’ set of prices) 

 

OpenRules  Opt 

Price Optimization 

Result validation 

test/control  
analysis 

BR 

merchant 

flash sale 



1. Data Preparation 

Data Set 
For Predictions 

Sale 
Attributes 

Product 
Attributes 

Product 
Performance 

Brand Category … 

Color Material … 

MSRP Discount … 

Day Holidays … 

Single/Multi 
Branded … 

Duration Season … 

Exposures … 

Price 
Changes … 

Initial … 

13 



2. Demand Prediction 

 $-

 $100

 $200

 $300

 $400

 $500

 $600

 $700

0

2

4

6

8

10

12

14

 $40  $50  $60  $70  $80  $90  $100  $110  $120  $130

Example: Predicted Demand and Revenue at different Prices 

Prices 

D
e

m
an

d
 

R
ev

e
n

u
e

 

14 



3. Price Optimization 

• Goals: 
- optimize per product and per sale 
- allow business user to set goals (revenue, 
sell-through, margin, or combination) 

 

• Iterate quickly 

 

15 



Sample Rules 
Minimal Number of Previous 

Exposures 
Variable                            <oper>                       Value   

Is 0 
Minimum Discount 

from MSRP 

Is 

20 Initial Sales 

Is 0 
Percent Difference 

from Original Price 40 

Is 0 
Minimal Margin 

Percent 40 

Is 0 
Minimal Sell 

Through Percent 20 

Is 1 
Minimum Discount 

from MSRP 

Is 

20 Repeat Sales 

Is 1 
Percent Difference 

from Original Price 40 

Is 1 
Minimal Margin 

Percent 30 

Is 1 
Minimal Sell 

Through Percent 20 

Is 10 
Minimum Discount 

from MSRP 

Is 

60 Exit Sales 

Is 10 
Percent Difference 

from Original Price 40 

Is 10 
Minimal Margin 

Percent 5 

Is 10 
Minimal Sell 

Through Percent 40 

16 



Optimization Weights 

Variable                            <oper>                       Value   

Gross Revenue Weight 

Is 

2 

Gross Margin Weight 
5 

Gross Sell Through Weight 
3 

Sample Results For A Sale: 

Target Revenue Margin Sell-through 

Max Revenue $6,606 58% 23% 

Max Margin $4,289 67% 16% 

Max Sell-through $5,628 48% 24% 

17 



Per sale optimization 

Best predictors of demand (number of units sold): 
 
• Number of units available 

 
• Price, Discount, MSRP 

 
• Item price relative to the prices of other items in the sale 

 
• Product attributes, etc 
 
Prediction changes: 
Before: predict demand for all acceptable prices 
Now: same as before but for all possible totals 
 

18 



Item Price Total Demand 

Ball $2 $3 4 

Ball $2 $5 4 

Ball $4 $5 2 

Ball $4 $7 2 

Pen $1 $3 7 

Pen $1 $5 8 

Pen $3 $5 1 

Pen $3 $7 0 

Example 
Item Price Total Demand 

Ball $2 $3 4 

Ball $2 $4 4 

Ball $2 $5 4 

Ball $2 $6 3 

Ball $2 $7 3 

Ball $4 $3 2 

Ball $4 $4 2 

Ball $4 $5 2 

Ball $4 $6 2 

Ball $4 $7 2 

Pen $1 $3 7 

Pen $1 $4 7 

Pen $1 $5 8 

Pen $1 $6 8 

Pen $1 $7 8 

Pen $3 $3 1 

Pen $3 $4 1 

Pen $3 $5 1 

Pen $3 $6 1 

Pen $3 $7 0 

Prices: $2 or $4 

Prices: $1 or $3 

Price total: $3 - $7 
- Apply constraints early 
- Calculate all the totals 

19 



Multiple Knapsack Problem / Bin-packing problem 

• All items must be priced 
 

• Each item must have only one price 
 

• Sum of all prices should equal to one and only one total 
 

20 



Problem definition (MathProg) 

set Look; 
set Price := 1..10000; 
set Total := 1..100000; 
 
set Look_Price_Total within {l in Look, p in Price, t in Total}; 
param price  {(l,p,t) in Look_Price_Total}, >= 0, integer := p; 
param demand {Look_Price_Total}, >= 0, integer; 
param revenue{(l,p,t) in Look_Price_Total} := price[l,p,t] * demand[l,p,t]; 
 
param orig_price  {Look_Price_Total}, >= 0, integer, default 0; 
param base_price  {Look_Price_Total}, >= 0, integer, default 0; 
param msrp_price  {Look_Price_Total}, >= 0, integer, default 0; 
param num_units_available {Look_Price_Total}, >= 0, integer, default 0; 
 
set Unique_Total := setof{(l,p,t) in Look_Price_Total} t; 
 
var Use {Look_Price_Total} binary; 
var Use_Total {Unique_Total} binary; 
 
maximize Revenue:     sum{(l,p,t) in Look_Price_Total} revenue[l,p,t] * Use[l,p,t]; 
 
s.t. one_of_each{l in Look}: sum{(l,p,t) in Look_Price_Total} Use[l,p,t] = 1; 
s.t. single_total: sum{t in Unique_Total} Use_Total[t] = 1; 
s.t. price_sum_is_total{t in Unique_Total}:  
 sum{(l,p,t) in Look_Price_Total} price[l,p,t] * Use[l,p,t] = t * Use_Total[t]; 

set Look := Ball Pen; 
 

param: Look_Price_Total: demand := 
Ball        2      3    4    
Ball        2      4    4    
Ball        2      5    4    
Ball        2      6    3    
Ball        2      7    3    
Ball        4      3    2    
Ball        4      4    2    
Ball        4      5    2    
Ball        4      6    2    
Ball        4      7    2    
Pen         1      3    7    
Pen         1      4    7    
Pen         1      5    8    
Pen         1      6    8    
Pen         1      7    8    
Pen         3      3    1    
Pen         3      4    1    
Pen         3      5    1    
Pen         3      6    1    
Pen         3      7    0;  

21 



Modeling and Solving Real-world Problems 

• We modeled the problem using OpenRules and JSR-331 
Standard 

• Real optimization problems consist of hundreds of thousands 
records: 

• We used JSR-331 Constraint Solvers to validate the problem 
correctness. But actual problems were too large for constraint 
solvers 

• We tried various JSR-331 Linear Solvers (GLPK, LP-Solve, COIN 
suite, SCIP, and others) 

• None was able to solve large problems in a reasonable time or at 
all 

22 



How We Solved the Production Problem 

• OpenRules was able to create a rules-based decision model 
that automatically splits one large problem into a set of 
smaller sub-problems (one for every individual total cost) 

• While there may be thousands of sub-problems, JSR-331 
Linear Solvers are able to quickly solve them 

• Then OpenRules decision model analyzes all found solutions 
to come up with the optimal solution that satisfy a 
configurable combined objective – a maximal combination of 
Revenue, Margin, and Sell-Through 

• Big advantage of this approach: it can be parallelized to solve 
even much larger problems! 

 

23 



Conclusion 

• We applied a combination of Machine Learning, Business 
Rules, and Multi-Objective Optimization to solve a real-
world operational problem – flash sale price optimization 

• The pricing methodology and tools that support each of 
these 3 decision management techniques were readily 
available and quite powerful 

• However, the production-level problems required a 
special ingenious approach to actually solve these 
problems 

 

24 



Questions? 

Igor Elbert 
ielbert@gilt.com 
 
Jacob Feldman 
jacobfeldman@openrules.com  

25 

mailto:ielbert@gilt.com
mailto:jacobfeldman@openrules.com

