
Jacob Feldman, PhD
OpenRules, Inc.

Chief Technology Officer

www.OpenRules.com

Decision Modeling: Good, Bad, Ugly

© OpenRules, Inc., 2022

Decision Modeling: Theory and Practice

• Commonly agreed design approaches:

• Orientation to Business Users (subject matter experts)

• Top-down decision modeling

• Low Code / No Code Decision Services

• Support for ongoing improvements decision-making apps

• This presentation will:

• Check general design principles vs real-world decision models

• Discuss different implementations of the same decision model

• Good

• Bad

• Ugly

• A better one?

© OpenRules, Inc., 2022

Selecting a Decision Model
From Claim Processing Domain

• Highly popular domain where rule engines frequently applied

• Uses a lot of “Business Data” about compatible and incompatible
diagnoses and claimed activities

• Real-world claim processing applications deal with very large and
complex billing and coding lists and compliance rules

© OpenRules, Inc., 2022

Building Decision Model for
DMCommunity Challenge “Medical Claim Processing”

• A simplified use case in DMCommunity.org
Challenge published on May-2022

• Given a medical claim that contains multiple diagnoses,
e.g., K75.1, A065.1, A48.5, C94.42

• Our decision service is supposed to validate this claim
against one large CSV file that consists ~70,000 pairs of
incompatible diagnoses

• We need to keep in mind that real-world claim
processing applications deal with much more complex
cases:

• complex compatibility and incompatibilities conditions
with multiple columns and much larger CSV files with
500,000+ lines

International Statistical
Classification of Diseases and
Related Health Problems

https://en.wikipedia.org/wiki/International_Statistical_Classification_of_Diseases_and_Related_Health_Problems

© OpenRules, Inc., 2022

Sample

• Given Diagnoses: R29.891, M43.6, F45.8

• Pairs of diagnoses:

• Errors:

ICD10Codes.csv

R29.891, M43.6

R29.891,F45.8

M43.6, F45.8

Diagnosis 1 Diagnosis 2

R29.891 F45.8

© OpenRules, Inc., 2022

Problem Scope

• Claim Validation Service:

• Receives a set of diagnosis codes {C1,C2,C3,…}

• Should validate all these codes against the large CSV file

• Produce errors "Diagnosis Code [Ci] cannot be reported

together with [Cj]“ when:

• Ci found in Column 1 and CJ found in Column 2 of the same row

• Ci found in Column 2 and CJ found in Column 1 of the same row

• Same diagnosis codes can be found in both columns

• Do not produce duplicate errors like
[E71.313] cannot be reported together with [E72.3]

[E72.3] cannot be reported together with [E71.313]

• How to build the corresponding Decision Model?

ICD10Codes.csv

© OpenRules, Inc., 2022

Applying different decision modeling approaches

• Top-Down Approach

• Usually works fine

• I applied it initially

• But it distracted me forcing to concentrate up-front on how to select
different pairs of diagnoses

• Bottom-Up Approach

• Let’s assume that the pair {Diagnosis 1; Diagnosis 2} already selected

• We need to look for these diagnoses in the CSV file using the following logic:

IF (Diagnosis 1 found in the Column1 AND Diagnosis 2 found in the Column2)

OR (Diagnosis 1 found in the Column2 AND Diagnosis 2 found in the Column1)

THEN Report the error “Diagnosis 1 cannot be reported together Diagnosis 2”

© OpenRules, Inc., 2022

Good (Enough) Solution

© OpenRules, Inc., 2022

Search and Comparison Logic in OpenRules

• We need to search for Diagnosis 1 and Diagnosis 2 in the CSV file using the
following logic:

IF (Diagnosis 1 found in the Column1 AND Diagnosis 2 found in the Column2)

OR (Diagnosis 1 found in the Column2 AND Diagnosis 2 found in the Column1)

THEN Report the error “Diagnosis 1 cannot be reported together Diagnosis 2”

• It is easy to present this logic using the standard OpenRules decision table
of the type “BigTable”:

This is a single-hit table.

[ICD10Codes.csv] tells OpenRules to

apply one of two rules below to

every row in the CSV file

“BigTable” guarantees

superfast search

© OpenRules, Inc., 2022

How “BigTable” Works

• BigTable is an OpenRules extension of standard decision tables. We
could use the keyword “DecisionTable” instead of “BigTable”.
However, in some cases it may be 10-100 times slower. Why?

• BigTable uses a special execution algorithm based on self-balancing
binary search. For large volumes of “business data” it increases
decision table the performance 10-100 times!

• Additional capabilities:

• We can use BigTableMultiHit to accumulate certain values
while we navigate through the CSV file

• You may save exact row numbers for which the rules were
successfully executed

• Instead of keeping “business data” in a separate CSV file you
may move all data rows directly into the Excel-based decision
table

© OpenRules, Inc., 2022

Selecting Diagnosis Pairs

• So, now we know that the table “SearchCSV” will be good for search and
comparison logic:

• Next question: How to invoke the table “SearchCSV” for different pairs of
diagnoses reported in the claim?

© OpenRules, Inc., 2022

• Being a Java developer, my first impulse was to implement this logic as a
Java method directly in Excel:

• People familiar with Java or C can quickly understand what I did here:

• I used two for-loops iterating over the same array “diagnoses”

• The second (nested) loop uses only those diagnoses which were not selected
yet in the first loop

• When the pair {Diagnose 1; Diagnose 2} is defined, I invoke “SearchCSV” by
using OpenRules API call:

decision.execute(“SearchCSV”);

Selecting Diagnosis Pairs: Java

© OpenRules, Inc., 2022

Adding Glossary, Test Cases, and Executing
Decision Model

• Glossary:

• Test Cases:

• The decision model was correctly executed within milliseconds

© OpenRules, Inc., 2022

• I will show how we can implement similar nested loops not in Java but
using regular decision tables with a special column “ActionLoop”

• For instance, let’s consider the following action column inside a regular
decision table:

• It iterates through all diagnoses from the array “Diagnoses” and for each
selected “Diagnosis” executes the decision table “DoSomething”

• Here “Diagnoses” and “Diagnosis” are regular decision variables, and the
decision table “DoSomething” can do something with the current
“Diagnosis”

Should we get rid of Java and
if “Yes” then “How”?

• The working Java code is not changed frequently and can be used in
production “as is”.

• However, how about our orientation to business users not familiar with
basic Java or C? They don’t want to see any code.

© OpenRules, Inc., 2022

Selecting Diagnosis Pairs: Without Java

• Here our Java loops replaced with the following decision tables:

• So, to avoid the same diagnoses inside the nested loop I added an intermediate array
“Already Selected Diagnoses”. Why?

• Because “ActionLoop” does not support indexes (we thought it would be too much
for business users)

© OpenRules, Inc., 2022

Decision Diagram

© OpenRules, Inc., 2022

Live Demo of this Decision Model

• Dynamic Decision Diagrams

• Testing and Debugging

• Deploying as AWS Lambda

• Executing from POSTMAN

• Average Performance Results:
1.3 milliseconds/claim

© OpenRules, Inc., 2022

Decision Tables vs Java

Decision Tables Java

----------------------- Diagnosis Pair Selection Logic --------------

----------------------- Search and Comparison Logic --------------

© OpenRules, Inc., 2022

Decision Tables vs Java

Decision Table with CSV

Java (courtesy of Dr. Bob Moore)

© OpenRules, Inc., 2022

• For simple cases (like in this challenge) both Decision Tables and Java may
provide relatively good and highly efficient solutions

• In real-world, we deal with much more complex conditions, e.g.

• They may include special indicators that allow certain incompatibilities to
be ignored, they may deal with time intervals, several CSV files, and much
more

• In these cases, simple and highly efficient Java Set’s method “contains”
would not work anymore while decision tables with CVS files will continue
effectively handle the most complex logic.

Decision Tables vs Java

Java (courtesy of Dr. Bob Moore)

© OpenRules, Inc., 2022

Bad Solution

© OpenRules, Inc., 2022

Falling into the Trap by bringing
a tool capabilities to the model and not vice versa

• My first attempt to solve the challenge failed badly. Here is why.

• I knew that OpenRules provides a nice operator “Intersect With” which
allows us to check if two arrays include the same elements. So, I my first
impulse was to use this decision table to analyze each Diagnosis:

• It would avoid using nested loops, but it required creating array of “Other
Diagnoses” for each diagnosis. This has to be done in Java.

• Additionally, for each diagnosis I still needed to search the CSV file to
determine two arrays: “Matches in Column 1” and “Matches in Column 2”

• And when I did it, my model still produced duplicated errors!

© OpenRules, Inc., 2022

Ugly Solution

© OpenRules, Inc., 2022

Ugly Solution

• If my initial bad solution was not ugly enough, I’d share another
bad one from our real-world experience

• In this case business analysts asked their IT colleagues to help
them to modify their business logic to avoid creation of similar
duplication errors

• And IT did “help” business analysts:

• They wrote a “post-processor” in Java that took the array of all
produced errors and removed duplications

• Of course, the logic that defined “duplications” was hardcoded in
Java!

• Hopefully, I don’t need to comment why this solution is ugly.

© OpenRules, Inc., 2022

Better Solution?

© OpenRules, Inc., 2022

Summary

• Commonly accepted theoretical approaches don’t always
work in practical decision modeling

• We considered different implementations of the same decision
model

• Good (enough)

• Bad

• Ugly

• Challenge: Build a better solution

