o3V IDECISION
VI8 MANAGER

Decision Modeling: Good, Bad, Ugly

Jacob Feldman, PhD

OpenRules, Inc.
Chief Technology Officer

www.OpenRules.com

CAMP Decision Modeling: Theory and Practice

® Commonly agreed design approaches:
® Orientation to Business Users (subject matter experts)
®* Top-down decision modeling
® Low Code / No Code Decision Services
® Support for ongoing improvements decision-making apps
® This presentation will:
®* Check general design principles vs real-world decision models

® Discuss different implementations of the same decision model

®* Good
® Bad
° Ugly

® A better one?

© OpenRules, Inc., 2022

DECISION

Selecting a Decision Model
From Claim Processing Domain

® Highly popular domain where rule engines frequently applied

®* Uses a lot of “Business Data” about compatible and incompatible
diagnoses and claimed activities

® Real-world claim processing applications deal with very large and
complex billing and coding lists and compliance rules

© OpenRules, Inc., 2022

CAMP Building Decision Model for
DMCommunity Challenge “Medical Claim Processing”

®* A simplified use case in DMCommunity.org
Challenge published on May-2022

® Given a medical claim that contains multiple diagnoses,
e.g., K75.1, A065.1, A48.5, C94.42

® Our decision service is supposed to validate this claim
against one large CSV file that consists ~70,000 pairs of
incompatible diagnoses

®* We need to keep in mind that real-world claim
processing applications deal with much more complex
cases:

®* complex compatibility and incompatibilities conditions
with multiple columns and much larger CSV files with
500,000+ lines

© OpenRules, Inc., 2022

ICD-10

International Statistical
Classification of Diseases and
Related Health Problems

Column 1,Column 2
A48.5.A05.1
K75.0,A06.4
K75.0,K83.00
K75.0,K75.1
G07,A006.6
G07.B43.1

https://en.wikipedia.org/wiki/International_Statistical_Classification_of_Diseases_and_Related_Health_Problems

DECISION Sa m p I e

ICD10Codes.csv

® Given Diagnoses: R29.891, M43.6, F45.8 Column 1,Column 2

L4g.5,R05.1
K75.0,R06.4
K75.0,KEB83.05
® Pairs of diagnoses: K75.0,K75.1
c07,R06.6
c07,B43.1

R29.891, M43.6 G07,R54.62

G07,R17.81

R29.891,F45.8 07 2171
M43.6, F45.8 N51,A06.8

N51,B37.42
N51,454.23

. . . . 51,R54.22
\ Diagnosis 1 | Diagnosis 2 No1 neo. o1

N51,R5%.02

R29.891 F45.8 N51,218.14

l N48.1,R06.8

v

N45.1,N458.0
N45.1,B37.42
N4B.1,A54.23

R29.891 cannot be reported together with M43.6 N48.1,260.01
R29.891 cannot be reported together with F45.8 e ay
M43 .6 cannot be reported together with F45.8 B60,A07- 3

Jg%s.11,215

® Errors:

© OpenRules, Inc., 2022

DECISION

Problem Scope

® (Claim Validation Service:

® Receives a set of diagnosis codes {C,,C,,C;,...}

® Should validate all these codes against the large CSV file —

® Produce errors "Diagnosis Code [C;] cannot be reported
together with [Cj]“ when:

Ci found in Column 1 and C, found in Column 2 of the same row

Ci found in Column 2 and CJ found in Column 1 of the same row

®* Same diagnosis codes can be found in both columns

& Do

not produce duplicate errors like

[E71.313] cannot be reported together with [E72.3]
[E72.3] cannot be reported together with [E71.313]

®* How to build the corresponding Decision Model?

© OpenRules, Inc., 2022

Claim:

- Patient: ...

- Diagnoses:
o E71.313
o E/23
o GO7

ICD10Codes.csv

Column 1,Column 2
n48.5,A05.1
K75.0,R06.4
K75.0,KB83.09
K75.0,K75.1
=07,806.6
c07,B43.1
G07,R54.82
G07,R17.81
=07,R217.1
N51,R06.8
N51,B37.42
N51,R54.23
N51,Rn54.22
N51,R60.01
N51,259.02
N51,R15.14
N48.1,R06.8
N48.1,N458.0
N48.1,B37.42
N4B8.1,R54.23
N48.1,Rc0.01
Bel,n07.2
Bel,R07.8
BeD,n07.3
Jsg.11,R15

came Applying different decision modeling approaches

®* Top-Down Approach
® Usually works fine
®* lapplied it initially

® But it distracted me forcing to concentrate up-front on how to select
different pairs of diagnoses

* Bottom-Up Approach

® Let’s assume that the pair {Diagnosis 1; Diagnosis 2} already selected

®* We need to look for these diagnoses in the CSV file using the following logic:
IF (Diagnosis 1 found in the Column1 AND Diagnosis 2 found in the Column2)
OR (Diagnosis 1 found in the Column2 AND Diagnosis 2 found in the Column1)

THEN Report the error “Diagnosis 1 cannot be reported together Diagnosis 2"

© OpenRules, Inc., 2022

DECISION

Search and Comparison Logic in OpenRules

®* We need to search for Diagnosis 1 and Diagnosis 2 in the CSV file using the
following logic:

IF (Diagnosis 1 found in the Column1 AND Diagnosis 2 found in the Columnz2)

OR (Diagnosis 1 found in the Column2 AND Diagnosis 2 found in the Column1)

THEN Report the error “Diagnosis 1 cannot be reported together Diagnosis 2"

® |tis easy to present this logic using the standard OpenRules decision table
of the type “BigTable”:

“BigTable” guarantees

superfast search

Condition

Condition

This is a single-hit table.
[ICD10Codes.csv] tells OpenRules to

apply one of two rules below to
every row in the CSV file

BigTable SearchCSV [ICD10Codés.csv]

Action

ICD10Codes.csv

Column 1,Column 2

A48.5,R05.1
- - . - K75.0,R06.4
Diagnosis 1 Diagnosis 2 Errors K75.0,K83.09
- - +=

Column 1

Column 2

Column 2

Column 1

{{Diagnosis 1}} cannot be reported
together with {{Diagnosis 2}}

© OpenRules, Inc., 2022

CAMP How “BigTable” Works

® BigTable is an OpenRules extension of standard decision tables. We
could use the keyword “DecisionTable” instead of “BigTable”.
However, in some cases it may be 10-100 times slower. Why?

® BigTable uses a special execution algorithm based on self-balancing
binary search. For large volumes of “business data” it increases
decision table the performance 10-100 times!

® Additional capabilities:

®* We can use BigTableMultiHit to accumulate certain values
while we navigate through the CSV file

®* You may save exact row numbers for which the rules were
successfully executed

* Instead of keeping “business data” in a separate CSV file you
may move all data rows directly into the Excel-based decision
table

© OpenRules, Inc., 2022

DECISION

L S

Selecting Diagnosis Pairs

®* So, now we know that the table “SearchCSV” will be good for search and
comparison logic:

BigTable SearchCSV [ICD10Codes.csv]

Condition Condition Action
Diagnosis 1 Diagnosis 2 Errors
= = +=
Column 1 Column 2 {{Diagnosis 1}} cannot be reported
Column 2 Column 1 together with {{Diagnosis 2}}

®* Next question: How to invoke the table “SearchCSV” for different pairs of
diagnoses reported in the claim?

© OpenRules, Inc., 2022

DegISIoN Selecting Diagnosis Pairs: Java

®* Being aJava developer, my first impulse was to implement this logic as a
Java method directly in Excel:

Code lterateDiagnoses

String[] diagnoses = (String[]) decision.getObjects("Diagnoses”);
for(int 1=0; 1< diagnoses.length-1; 1++) {
decision setVarValue("Diagnosis 1", diagnoses[i]);
for(int |=1+1;)< diagnoses length; j++) {
decision.setVarValue("Diagnosis 2", diagnoses|)]);
decision.execute("SearchCSV");

;

t

® People familiar with Java or C can quickly understand what | did here:
®* Jused two for-loops iterating over the same array “diagnoses”

®* The second (nested) loop uses only those diagnoses which were not selected
yet in the first loop

®* When the pair {Diagnose 1; Diagnose 2} is defined, | invoke “SearchCSV” by
using OpenRules API call:

decision.execute(“SearchCSV”);

© OpenRules, Inc., 2022

CAMP Adding Glossary, Test Cases, and Executing
Decision Model

° G[ossary; Glossary glossary
Variable Name | Business Concept Attribute Type
Claim Id id Siring
Diagnoses Claim diagnoses Siring(]
Errors errors String(]
Diagnosis 1) diagnosis1i String
Diagnosis 2 Intermediate diagnosis?2 String
i lest Cases: DecisionTest testCases
|ActionDefine | ActionDefine ActionExpect
Test| ClaimlId Diagnoses Errors
1 A D47.02 D47.02 cannot be reported together with C94.32
C94.32 ' P 9
2 B EE;;;B E71.313 cannot be reported together with E72.3
R29 891 R29.891 cannot be reported together with M43.6
3 C M43.6 R29.891 cannot be reported together with F45.8
F45.8 M43.6 cannot be reported together with F45.8
D75.81 .
4 D C94 42 D75.81 cannot be reported together with C94 42
D75.81
2 D C94.32

®* The decision model was correctly executed within milliseconds

© OpenRules, Inc., 2022

DEaoN Should we get rid of Java and
if “Yes” then “How”?

®* The working Java code is not changed frequently and can be used in
production “as is”.

®* However, how about our orientation to business users not familiar with
basic Java or C? They don’t want to see any code.

@ @ @
* | will show how we can implement similar nested loops not in Java but

using regular decision tables with a special column “ActionLoop”

® Forinstance, let’s consider the following action column inside a regular
decision table:

ActionLoop
For Each From Execute
Diagnosis Diagnoses DoSomething

® It iterates through all diagnoses from the array “Diagnoses” and for each
selected “Diagnosis” executes the decision table “DoSomething”

®* Here “Diagnoses” and “Diagnosis” are regular decision variables, and the
decision table “DoSomething” can do something with the current
“Diagnosis”
© OpenRules, Inc., 2022

DECISION

Selecting Diagnosis Pairs: Without Java

Here our Java loops replaced with the following decision tables:

ActionLoop
For Each From Execute
Diagnosis 1 Diagnoses IterateOtherDiagnoses

DecisionTable IterateOtherDiagnoses

Action ActionLoop
Already Selected Diagnoses For Each From Execute
Add Diagnosis 1 Diagnosis 2 Diagnoses AnalyzeDiagnoses._|

DecisionTable AnalyzeDiagnoses

Condition ActionExecute
Diagnosis 2 Execute
s Not One |Already Selected
. SearchCsV
of Diagnoses

So, to avoid the same diagnoses inside the nested loop | added an intermediate array
“Already Selected Diagnoses”. Why?

Because “ActionLoop” does not support indexes (we thought it would be too much

for business users)
© OpenRules, Inc., 2022

DECISION

Decision Diagram

ValidateClaim
Execute

N 2
Execute . ‘ ShowClaimErrors '
1 o

IterateDiagnoses

Loop, over N .
Diagnoses .

IterateOtherDiagnoses @

Loop, over
Diagnoses

Already
Selected Diagnoses

I
I
i
|
|
1

R
‘ AnalyzeDiagnoses '—E-xec:ute SearchCSV

© OpenRules, Inc., 2022

DECISION

POST

Scd',-' hd

Pretty

© OpenRules, Inc., 2022

"decision5tatusCode”: 208

"rulesExecutionTimeMs™;

Live Demo of this Decision Model

https://nGgyi0)/6k.execute-api.us-east-1.amazonaws.com/test/i-c-d10 “

Auth Headers (10) Body ® FPre-req. ests Settings Cookies
JSON Beautify
R * Dynamic Decision Diagrams
"diagnoses" : ["R29.891", "M43.6", "F45.8"]

® Testing and Debugging
®* Deploying as AWS Lambda
® Executing from POSTMAN

® Average Performance Results:
1.3 milliseconds/claim

Haw Preview Visualize JSON —

"response”: 1
‘claim”: {
"errors": [

"R29.891 cannot be reported together with M43.6",
“"R29.891 cannoct be reported together with F45.8",
“M43.6 cannot be reported together with F45.8"

DECISION

Decision Tables vs Java

----------------------- Diagnosis Pair Selection Logic --------------

Decision Tables

ActionLoop

DecisionTable lterateDiagnoses

For Each From

Execute

Diagnosis 1 Diagnoses IterateOtherDiagnoses
DecisionTable IterateOtherDiagnoses

Action ActionLoop
Already Selected Diagnoses For Each From Execute
Add ‘ Diagnosis 1 Diagnosis 2 Diagnoses AnalyzeDiagnoses |

DecisionTable AnalyzeDiagnoses
Condition

ActionExecute

Diagnosis 2

Execute

Is Not One |Already Selected
i SearchCSV
o] Diagnoses

B e SES TR

BigTable SearchCSV [ICD10Codes.csv]

© OpenRules, Inc., 2022

Java

Code lterateDiagnoses

Siring[] diagnoses = (5tring[]) decision getObjects("Diagnoses™);
for(int i=0; i< diagnoses_length-1; i++) {
decision_ setVarValue("Diagnosis 1", diagnoses|i]);
for(int j=i+1; j< diagnoses.length; j++) {
decision setVarValue("Diagnosis 2", diagnoses[j]);
decision_execute({SearchCS\|"):
}

Comparison Logic --------------

Condition Condition Action
Diagnosis 1 Diagnosis 2 Errors
= = +=
Column 1 Column 2 {{Diagnosis 1}} cannot be reported
Column 2 Column 1 together with {{Diagnosis 2}}

Decision Tables vs Java

DECISION

Decision Table with CSV

BigTable SearchCSV [ICD10Codes.csv]
Action

Condition Condition
Diagnosis 1 Diagnosis 2 Errors
- - +=
Column 1 Column 2 {{Diagnosis 1}} cannot be reported
Column 2 Column 1 together with {{Diagnosis 2}}

Java (courtesy of Dr. Bob Moore)

public ArrayList<String> checkCase(int caseNum, String[] caseData,'SEt<String> Fnrbiddentombﬂs}l{

ArrayList<String> clashes = new ArrayList<String>();

int length = caseData.length;
// note if length <= 1, the loop does not execute
for (int first = ©; first < length - 1; first++) {
String firstStr = caseData[first];
for (int second = first + 1; second < length; second++) {
String secondStr = caseData[second];
String key = firstStr + "|" + secondStr;

if dfurbiddentombus.containﬁikegﬂ) {

clashes.add(String.format(
"Case Record %5d: Diagnosis Code %7s cannot be reported together with %7s",

caseNum, firstStr, secondStr));

}
}

return clashes;

© OpenRules, Inc., 2022

Decision Tables vs Java

DECISION

®* For simple cases (like in this challenge) both Decision Tables and Java may
provide relatively good and highly efficient solutions

® Inreal-world, we deal with much more complex conditions, e.g.

Condition Condition | Condition | Condition
Activity Activity Diagnosis | Diagnosis
Code Code Code Code
»= <= »= <=
Activity Code |Activity Code | Diagnosis Diagnosis
Min Max Code Min | Code Max

®* They may include special indicators that allow certain incompatibilities to

be ignored, they may deal with time intervals, several CSV files, and much
more

® In these cases, simple and highly efficient Java Set’s method “contains”
would not work anymore while decision tables with CVS files will continue
effectively handle the most complex logic.

© OpenRules, Inc., 2022

DECISION

Falling into the Trap by bringing
a tool capabilities to the model and not vice versa

My first attempt to solve the challenge failed badly. Here is why.

| knew that OpenRules provides a nice operator “Intersect With” which
allows us to check if two arrays include the same elements. So, | my first

impulse was to use this decision table to analyze each Diagnosis:

DecisionTable DiagnosisMismatches

Condition | Condition Condition Action
Foundin | Found in Other Diagnoses Errors
Column 2 | Column 1
TRUE 41terse% Matches in Column
\With/ 2 Add {{Diagnosis}} cannot be reported
TRUE Inters:ct Matches in Column together with {{Other Diagnoses}}
Wit 1

It would avoid using nested loops, but it required creating array of “Other

Diagnoses” for each diagnosis. This has to be done in Java.

Additionally, for each diagnosis | still needed to search the CSV file to

determine two arrays: “Matches in Column 1” and “Matches in Column 2

And when | did it, my model still produced duplicated errors!

© OpenRules, Inc., 2022

DECISION

Ugly Solution

® If my initial bad solution was not ugly enough, I'd share another
bad one from our real-world experience

® In this case business analysts asked their IT colleagues to help
them to modify their business logic to avoid creation of similar
duplication errors

* And IT did “help” business analysts:

®* They wrote a “post-processor” in Java that took the array of all
produced errors and removed duplications

®* Of course, the logic that defined “duplications” was hardcoded in
Java!l

® Hopefully, | don’t need to comment why this solution is ugly.

© OpenRules, Inc., 2022

DECISIOél S u m m a ry

®* Commonly accepted theoretical approaches don’t always
work in practical decision modeling

®* We considered different implementations of the same decision
model

®* Good (enough)
®* Bad

* Ugly
® Challenge: Build a better solution

QA

© OpenRules, Inc., 2022

