
OpenRules, Inc.

www.openrules.com

July-2019

CREATING

OPENRULES
DECISION

MICROSERVICES
WITH

MAVEN, SPRINGBOOT, AND DOCKER

http://www.openrules.com/

OpenRules, Inc. OpenRules Web Services

2

TABLE OF CONTENTS

Introduction .. 3

What You’ll Do .. 3

What Should Be Pre-Installed .. 4

Mavenizing OpenRules Configuration .. 4

Creating a Maven OpenRules Project in Eclipse ... 6

Defining Decision Model ... 7

Adding a Java Interface ... 11

Creating Spring Boot Web Application ... 16

Adding Service to Spring Boot Application ... 18

Testing Decision Service with POSTMAN .. 22

Testing Decision Service with a Java Client .. 24

Adding Another OpenRules Decision Service .. 25

Deploying Decision Service to Docker .. 35

Conclusion .. 36

Technical Support ... 36

OpenRules, Inc. OpenRules Web Services

3

INTRODUCTION

Nowadays microservices quickly become a highly popular architectural approach. They have
shown essential advantages over the legacy style of monolithic single applications:

• Easy deployment

• Simple scalability

• Compatible with Containers and cloud environments

• Minimum configuration

• Lesser production time.

It’s only natural to deploy Business Decision Models created and tested by business users as

decision microservices. This tutorial provides a sampling of how to build Decision Microservices

with Spring Boot and OpenRules and containerize them with Docker.

WHAT YOU’LL DO

We will explain what you need to do to create, test, and deploy an OpenRules-based decision

service using SpringBoot and Docker. We will assume that you are familiar with Java and Eclipse

IDE and have a high-level understanding of the Spring framework and Docker.

Following step-by-step instructions below, you do the following:

• “Mavenize” the standard OpenRules configuration

• Create a simple Maven project in Eclipse which will be used to invoke OpenRules-based

service with business logic represented in Excel decision tables

• Test this from Java

• Convert this decision service to a simple REST web application built using Spring Boot

and test it with POSTMAN using JSON

• Containerize this decision service using Docker and test it using POSTMAN and/or a

Java-based client.

https://github.com/spring-projects/spring-boot
http://openrules.com/
https://www.docker.com/

OpenRules, Inc. OpenRules Web Services

4

In the end, you will be ready to create and containerize your own OpenRules decision services.

WHAT SHOULD BE PRE-INSTALLED

We assume that you’ve already installed:

• Java 1.8 or later

• Eclipse IDE

• Maven

• OpenRules evaluation (or complete) version by downloading the workspace

“openrules.models”

• Docker Desktop.

When all these products are installed, start Eclipse with a new workspace called

“openrules.services”.

MAVENIZING OPENRULES CONFIGURATION

The standard OpenRulesinstallation workspace “openrules.models” contains a special

configuration project called “openrules.config” and a set of sample projects such as

“VacationDays”. Import the standard OpenRules configuration project “openrules.config” from

the workspace “openrules.models” to the already opened workspace “openrules.services”.

We are going to use Maven as our main building tool, so first we need to “mavenize” this

OpenRules configuration. We will install all jar-files from “openrules.config/lib” to the local

Maven’s repository, that is a directory on your computer where Maven holds all artifacts and

dependencies. To do that, first we will add the following “pom.xml” file to “openrules.config”:

https://www.oracle.com/technetwork/java/javase/downloads/index.html
http://eclipse.org/
https://maven.apache.org/install.html
http://openrules.com/download_eval.htm
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://maven.apache.org/index.html

OpenRules, Inc. OpenRules Web Services

5

Note that along with necessary jar-files, we configured a rule repository called “rules” as a
“resource” folder, so that the content of this folder will be packaged into created jars along with
classes, properties files and other resources, and will be used by all decision services we plan to
add to this Maven configuration.

Now we will add the following file “install.bat” to “openrules.config”:

OpenRules, Inc. OpenRules Web Services

6

Now you may right-click on this file and select “Open With System Editor” – alternatively you

may double-click on this file from File Explorer or just execute 4 commands used inside this file

directly from a command line. It will build OpenRules Config 7.0.1-SNAPSHOT in your local

Maven repository (but you don’t even need to look at it). Your Maven is ready to work with

OpenRules.

CREATING A MAVEN OPENRULES PROJECT IN ECLIPSE

Now we will create a Maven project for the OpenRules service “VacationDays”. From you Eclipse

File-menu, select File+New Project+Maven Project:

OpenRules, Inc. OpenRules Web Services

7

Click “Next” and enter the Artifact data as below. For the Parent project click on “Browse..”,

start typing “openrules” and make the selections as on the right image:

DEFINING DECISION MODEL

We want to build a simple decision model that calculates the number of vacation days given to

an employee based on the age and years of service. Here are the business rules:

OpenRules, Inc. OpenRules Web Services

8

You already can find the proper decision model implemented in the standard OpenRules

workspace “openrules.models” as a stand-alone project “VacationDays”. In that project the

decision model was defined in the rules repository called “rules” and use the standard

OpenRules templates defined in the configuration project “openrules.config”.

For the Maven-based decision services we already decided to use the common rules repository

called “rules” which we added as a dependency to the file “openrules.config/pom.xml”. So, now

we will create the folder “rules” in our new Maven’s project “VacationDays”. Then we will add

two sub-folders to the folder “rules”:

• templates – a placeholder for the standard OpenRules templates

• vacationDays – a placeholder for our decision model “VacationDays”.

So, now we will copy files “openrules.config/DecisionTemplates.xls” and

“openrules.config/DecisionTableExecuteTemplates.xls” into the subfolder “templates”. Then we

will copy all Excel files from the folder “openrules.models/VacationDays/rules” to the subfolder

“vacationDays”. Here are Excel files and tables that implement vacation days calculation logic.

File “rules/vacationDays/Rules.xls”:

OpenRules, Inc. OpenRules Web Services

9

All decision goals, variables, and user Decision objects are defined in the file “rules/

vacationDays/Glossary.xls”:

The structure of this decision model was defined in the file “DecisionModel.xls” in this

Environment table that used to look as below:

OpenRules, Inc. OpenRules Web Services

10

The third include-statement referred to the standard templates located two levels above the old

project “VacationDays”. Now we keep these templates in the subfolder “templates” that is on

the same level as the folder “vacationDays”. So, we need to adjust the Environment table as

follows:

The folder “rules/vacationDays” also include the file “Test.xls” that specifies Datatype

“Employee” and creates several test-cases with expected results. To make sure that the new

decision model still works, copy file “build.bat” and “run.bat” from

openrules.models/VacationDays/ to our new project “VacationDays”, and make the following

changes in them:

File “build.bat”:

File “run.bat”:

These bat-files use openrules.config’s file projectBuild.bat and projectRun.bat. Both these files

referred to compiles classes using set CLASSES=./bin. However, in the Maven’s projects

compiled classes are created not in “bin”, but rather in “target”. So, we need in both these bat-

OpenRules, Inc. OpenRules Web Services

11

files replace the setting to

set CLASSES=./target/classes;./target/test-classes

Now, we can double-click on “build.bat” and it will build an execution path for this model and

will save it in the file “Goals.xls”. Then double-click on “run.bat” and it will execute all test-cases

producing the following results:

ADDING A JAVA INTERFACE

To execute the same model from Java, we will create 3 Java classes:

• Employee.java – to define test-employees

• VacationDaysService.java – to specify our service

• Test.java – to test the service locally.

So first, we create a new Java package “com.openrules.vacation” in the folder “src/maim/java”:

OpenRules, Inc. OpenRules Web Services

12

 and then add a new class Employee:

The class “Employee” will contain the same attributes that were used in the above Glossary and

the Datatype table “Employee”:

OpenRules, Inc. OpenRules Web Services

13

Then we will right-click on “Employee.java” and use “Source” + ”Generate Getters and Setters” +

“Generate toString()” to complete this class. Here is the class “VacationDaysService”:

Note, that we refer to main Excel file in the rules repository as “classpath:/Goals.xls”. It means

all Excel files that our folder “rules” also should be in the Maven classpath. This has been already

guaranteed when we added the dependency for “rules” to the “pom.xml”.

Now, we are ready to test our modified decision model “VacationDaysService”. The tests should

be placed to the automatically created folder “src/test/java”. So, we will add here a new

package “com.openrules.vacation”, and then we will add to this package a new class

“Test.java”:

OpenRules, Inc. OpenRules Web Services

14

Right-click on the file “Test.java” and select “Run As Java Application”. It will produce the results

that look like below:

We may consider that our decision service “VacationDays” has been tested as a stand-alone

application and is ready for further deployment. Our Eclipse project now looks as below:

OpenRules, Inc. OpenRules Web Services

15

To complete its Maven’s installation, we should right-click on “VacationDays/pom.xml” and

select “Run As” + “Maven Install”.

Now it’s time to migrate this service to a REST web-based application using Spring Boot.

OpenRules, Inc. OpenRules Web Services

16

CREATING SPRING BOOT WEB APPLICATION

The simplest way to create a Spring Boot project is to use Spring Initializr. To bootstrap your new

Spring Boot project, open https://start.spring.io/ and enter the following data:

When you click on “Generate Project”, Spring Initializr will create and download the file

“spring.zip” into your Downloads folder. Extract the downloaded zip file into your Eclipse

https://start.spring.io/
https://start.spring.io/

OpenRules, Inc. OpenRules Web Services

17

workspace folder “openrules.services”. In the Eclipse select “File + Import Project + Existing

Maven Projects”:

It will create a new project “spring”. This project already contains the file “Application.java”:

OpenRules, Inc. OpenRules Web Services

18

This is the main application class with @SpringBootApplication annotation for our future Spring

Boot application. If you right-click on this file “Application.java” and select “Run as Java

Application” the Spring Boot will start the embedded Tomcat server, deploy the application on

the Tomcat, and will wait for HTTP requests on the port “localhost:8080”. But this application

doesn’t have any services yet. In the next section, we will add our VacationDaysService to this

web application.

ADDING SERVICE TO SPRING BOOT APPLICATION

To add different services to this application, we need to create a Java class called a REST

Controller that may include different services waiting to be executed upon the proper HTTP

request. We will call our REST Controller “VacationDaysController” and it will include our service

defined in the project “VacationDaysService”. To make sure that the Spring Boot project

“spring” is aware of our project “VacationDaysService”, right-click on “spring/pom.xml” and

select Maven + Add Dependency. It will open this dialog:

OpenRules, Inc. OpenRules Web Services

19

Start typing “openrul” in the box “Enter groupId,…” and it will show available results. Select

“com.openrules.samples VacationDays” and Group ID, Artifact Id” and “Version” will be filled

out automatically. After you click OK, Eclipse will add the following dependency to the file

“spring/pom.xml”:

Of course, you could add them manually as well.

Now we can create a new Java class “VacationDaysController” in the same package

“com.service.spring” where SpringBoot placed the above class Application. Here is the initial

version:

OpenRules, Inc. OpenRules Web Services

20

Here we use Spring Boot dependency injection facilities by adding an annotation @Autowired to

the definition of our service. When you type Eclipse will automatically add the corresponding

imports.

To handle the incoming HTTP requests for our service, this controller should include a method

that will accept an Employee object as a parameter and returns a calculated number of vacation

days for this employee.

The method “calculateVacationDays” will be automatically called when our web application

receives a POST request through the URL “/vacationDays” with a JSON object that has the same

properties as the class Employee. To define this functionality, we used Sprint Boot annotations

@RequestMapping and @RequestBody:

 @RequestMapping(path=”/vacationDays”, method={RequestMethod.POST})

 public int calculateVacationDays(@RequestBody Employee employee) {...}

We are not done yet. To “autowire” this service, we need to inform Spring how to create an

instance of the class VacationDaysService. It’s usually done within a special class annotated of

the type @Configuration. So, we need to create a new class “ServiceFactory” annotated it with

@Configuration. For each service this class should include a method annotated with @Bean

that creates and returns an instance of the service. In our case it will be the method

“newVacationDaysService” as described below:

OpenRules, Inc. OpenRules Web Services

21

This completes the development of our Spring Boot application with one service that will be

called using URL “/vacationDays”.

To test our web application, right-click on “Application.java” and select “Run As Java

Application”. It will start the embedded Tomcat, deploy the latest version of our spring project,

and will wait to HTTP requests. Here is the protocol from the Eclipse’s Console view:

…
At the end of the protocol in the right bottom corner you should see that Spring started our
service:

OpenRules, Inc. OpenRules Web Services

22

Now our web application is running and waiting for HTTP requests.

TESTING DECISION SERVICE WITH POSTMAN

To create HTTP requests for this web application, we will use POSTMAN, a popular tool that can

be downloaded for free from https://www.getpostman.com/. After installation and start, you

may fill out this POSTMAN’s form:

https://www.getpostman.com/

OpenRules, Inc. OpenRules Web Services

23

In this form, we selected the method “POST” (from the drop-down list), typed the URL

“localhost:8080/vacationDays”, enter a simple JSON structure

 {
 “age”: 55
 “service”: 22
 }

After, a click on “Send”, the POSTMAN sent the proper HTTP request to our web application,

that executed our VacationDaysService and returned the calculated number of vacation days

“24” at the bottom of the form. We may enter different combinations of “age” and “service” to

make sure that our OpenRules-based VacationDaysService works as expected.

OpenRules, Inc. OpenRules Web Services

24

TESTING DECISION SERVICE WITH A JAVA CLIENT

Now we may test our running service from any Java program similar to what we did with

POSTMAN. Spring has already prepared for us the place for all Java tests: the package

“com.service.spring” in the folder “src/test/java”. Let’s add a new Java class

“VacationDaysClient” to this package. It may look as below:

As you can see, we create a string with the same JSON data as we used in POSTMAN. Then we

open a connection using the URL “http://localhost:8080/VacationDays”. When we write our

JSON data to the connection’s output stream, it sends the proper HTTP request to our service.

And then we simply read the produced results from the connection’s input stream.

As our service is still up and waiting, we may simply right-click on the “VacationDaysClient.java”

and select “Run As Java Application”. After executing the request, it will display the same 24

days.

OpenRules, Inc. OpenRules Web Services

25

ADDING ANOTHER OPENRULES DECISION SERVICE

Similarly to the service “VacationDays”, we can move more services from “openrules.models” to

our workspace “openrules.services”. Let’s start with the rules project Hello.

We will create a simple Maven project “Greeting”:

Defining Decision Model

We can find the proper decision model implemented in the standard OpenRules workspace

“openrules.models” as a stand-alone project “Hello”. First, we create a new rules repository in

the folder “rules” in our new Maven’s project “Greeting”. We may copy the subfolder

“templates” from the VacationDays/rules/templates into “rules”. Then we will create a

subfolder “greeting” inside “rules”. Then we will copy all Excel files from the folder

“openrules.models/Hello/rules” to the subfolder “greeting”. Here are Excel files and tables that

implement vacation days calculation logic.

File “rules/greeting/Rules.xls”:

OpenRules, Inc. OpenRules Web Services

26

All decision goals, variables, and decision objects are defined in the file

“rules/greeting/Glossary.xls”:

The file “rules/greeting/DecisionModel.xls” contains the modified Environment table:

OpenRules, Inc. OpenRules Web Services

27

The folder “rules/greeting” also includes the file “Test.xls” that specifies Datatype “Customer”

and creates several test-cases with expected results. To make sure that the new decision model

still works, we copy file “build.bat” and “run.bat” from openrules.models/Hello/ to our new

project “Greeting”, and make the following changes in them:

File “build.bat”:

File “run.bat”:

Double-click on “build.bat” and it will build an execution path for this model and will save it in

the file “Goals.xls”. Then double-click on “run.bat” and it will execute all test-cases producing

the expected results.

Adding a Java Interface

To execute the same model from Java, we will create 3 Java classes:

• Customer.java – to define test-employees

• GreetingService.java – to specify our service

• Test.java – to test the service locally.

So first, we create a new Java package “com.openrules.greeting” in the folder “src/main/java”

and then add a new class Customer:

OpenRules, Inc. OpenRules Web Services

28

Then we will use Eclipse to generate Getters and Setters and toString() methods for this class.

Then we add a new class “GreetingService”:

To test this modified decision model, we will add here a new package “com.openrules.greeting”

to “src/test/java/, and then we will add to this package a new class “Test.java”:

OpenRules, Inc. OpenRules Web Services

29

Right-click on the file “Test.java” and select “Run As Java Application”. It will produce the results

that look like below:

We may consider that our decision service “Greeting” has been tested as a stand-alone

application and is ready for further deployment. To complete Maven’s installation for this

project, we should right-click on “Greeting/pom.xml” and select “Run As” + “Maven Install”.

Now it’s time to migrate this service to a REST web-based application using Spring Boot.

Adding Greeting Service to Spring Boot Application

We will continue to use the same Spring Boot project ”spring” that we created earlier.

The file “Application.java” remains without changes. Now we want to add a new

“GreetingService” based on our project “Greeting”. To make sure that the Spring Boot project

“spring” is aware of our project “Greeting”, right-click on “spring/pom.xml”, select Maven + Add

Dependency, and fill out this dialog:

OpenRules, Inc. OpenRules Web Services

30

After you click OK, Eclipse will add the following dependency to the file “spring/pom.xml”:

Now we can create a new Java class “GreetingController” in the same package

“com.service.spring” where we placed “VacationDaysController”. Here is this class:

OpenRules, Inc. OpenRules Web Services

31

The method “produceGreetingFor” will be automatically called when our web application

receives a POST request through the URL “/greeting” with a JSON object that has the same

properties as the class Customer.

To “autowire” this service, we need to add the method “newGreetingService” (the name is up to

us) to the class “ServiceFactory”. This method will create and return an instance of

GreetingService. Here is the modified class “ServiceFactory”:

Now our Spring Boot application can handle two services: VacationDays and Greeting.

To test these services, we will start our application by right-clicking on “Application.java” and

select “Run As Java Application” – make sure that you stopped previous applications which use

the same port.

OpenRules, Inc. OpenRules Web Services

32

Now our web application is running and waiting for HTTP requests for services with URLs:
“localhost:8080/vacationDays” and “localhost:8080/greeting”. If you run POSTMAN with these
URLs and the proper JSON data, it will produce the expected results. We also may add a Java
client in the class GrretingServiceClient in src/test/java/:

When you run this class as Java Application, it will produce: ”Good Morning, Mrs.

Robinson!”.

To prepare our SpringBoot application for further deployment, we need to right-click on

“spring/pom.xml” and select “Run As” + “Maven install”. It will install

openrules.services\spring\target\spring-0.0.1-SNAPSHOT.jar to the Maven’s repository. We just

need to check the “Maven install” will be completed with the message “BUILD SUCCESS”. Here is

the latest structure of the project “spring”:

OpenRules, Inc. OpenRules Web Services

33

Please note that the jar-file openrules.services\spring\target\spring-0.0.1-SNAPSHOT.jar

completely encapsulates everything we need to run our deployed decision services

“VacationDays”, “Greeting”, and any other services we may add. And you don’t need to run

“Application.java” from Eclipse. Let’s stop this application in Eclipse. Let’s open a command line

window in the folder “openrules.services\spring”. Now we may enter the following command:

It will start our REST web application, initialize both “Greeting” and “VacationDays” services, and

wait for HTTP requests. Here is the start protocol:

OpenRules, Inc. OpenRules Web Services

34

Now again we may send HTTP requests from POSTMAN or from our Java clients or from similar

programs, and they will work as before. You actually may move spring-0.0.1-SNAPSHOT.jar to

any other location and it will work as well. It’s also ready to be uploaded to AWS or another

cloud repository, and invoke our decision services remotely.

OpenRules, Inc. OpenRules Web Services

35

DEPLOYING DECISION SERVICE TO DOCKER

Now it’s time to containerize our decision service using Docker. We are going to use the same

port, so let’s stop the running Application by clicking on the red rectangle in the Eclipse bar with

“Console”.

We need to add the following file “Dockerfile” to the folder “openrules.services/spring/”:

This file will be used to build a Docker image from the command line. To do this, we will use a

command line starting from the “openrules.services/spring/”.

Enter the following command:

It will build the Docker image of our Spring application and will call it “openrules.samples”. Here

is the execution protocol:

To run our application from the newly created container, we may enter the command:

OpenRules, Inc. OpenRules Web Services

36

It will show the temporary name of the started docker’s process, and our application is ready

again to handle HTTP requests. We can do it either from POSTMAN or from VacationDaysClient

and still will receive the same results as before.

Now you can use orchestration tools such as Kubernetes for of the Docker containers with

OpenRules decision services. The created Docker images can be deployed to any cloud

environment that supports Docker containers: AWS, Google Cloud, MS Azure, IBM Cloud,

Rackspace, and many others.

CONCLUSION

In this tutorial we demonstrated how to migrate OpenRules decision models to Maven. Then we

created a Sprint Boot REST application with several OpenRules-based decision models deployed

as decision services. We had shown how to test this decision services using by sending HTTP

requests with JSON data using the POSTMAN or Java-based clients. And finally, we containerized

this Spring Boot web application using Docker.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or to this Discussion Group.

https://docs.docker.com/docker-for-windows/kubernetes/
mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules

