
© 2012 OpenRules, Inc.

Using Decision Tables

to Model and Solve

Scheduling and Resource

Allocation Problems

Presenter: Dr. Jacob Feldman

OpenRules Inc., CTO

Using Decision Modeling

 Decision Modeling is a methodological

(technology independent) approach that

allows subject matter experts to build

executable decision models

We will demonstrate how a business

analyst without programming background

may build Scheduling Decision Models

© 2012 OpenRules, Inc. 2

“Every situation, no matter how complex

it initially looks, is exceedingly simple“

Eli Goldratt

Scheduling and Resource

Allocation Problems

 Schedule Activities (jobs)and Assign

Resources to them

 Traditionally considered as very complex

business problems

 They usually out of reach for the most rule

engines

 Frequently require an OR (Operation

Research) guru with deep knowledge of

C++/Java

© 2012 OpenRules, Inc. 4

Real-world example:

Workforce/Workload Management

 Field Service Scheduling for a major

Gas and Electric Utility

More than 1 million customers

More than 5000 employees

 Large Service territory

 Hundreds small and large jobs per day

 Job requires a mix of people skills,

vehicles and equipment

Multi-Objective Optimization

 Multi-objective Work Planning and

Scheduling:

• Travel time minimization

• Resource load levelization

• Skill utilization (use the least costly

skills/equipment)

• Schedule jobs ASAP

• Honor user-defined preferences

Generic Model

 Activities (jobs) with yet unknown start times and known durations

(not always)

 Resources with limited capacities varying over time

 Constraints

– Between activities: Job2 starts after the end of Job1

– Between activities and resources:
Job1 requires a welder for 1 hour, Job 2 consumes $1,500

 JSR331 Scheduler

Scheduler

Activity
Activity

Activity

Resource
Resource

Resource

Precedence

Constraints:

“starts after”

“starts before”

“starts at”

“and before”..

Resource

Constraints:

“requires”

“consumes”

“produces”

“provides”
• Var start

• Var duration

• Var end

 Capacity

 time

 Var
 Var Var

 V
ar

 V
ar

 V
ar

 Capacity Timetable

activityX.requires(resourceY, 5);

 // Alternative resource requirements

activity1.requires(resource2, varReq2);

activity1.requires(resource3, varReq3);

varReq2.ne(varReq3);

 Sample Problem

Sample Problem Implemetation
(Java with JSR-331 Scheduler)

Schedule schedule = ScheduleFactory.newSchedule(“oven”0, 11);

Activity A = schedule.addActivity(1, "A");

Activity B = schedule.addActivity(4, "B");

Activity C = schedule.addActivity(4, "C");

Activity D = schedule.addActivity(2, "D");

Activity E = schedule.addActivity(4, "E");

Resource oven = schedule.addResource(3, "oven");

oven.setCapacityMax(0, 2);

oven.setCapacityMax(1, 1);

oven.setCapacityMax(2, 0);

oven.setCapacityMax(3, 1);

oven.setCapacityMax(4, 1);

oven.setCapacityMax(10, 1);

// Resource Constraints

A.requires(oven, 2).post();

B.requires(oven, 1).post();

C.requires(oven, 1).post();

D.requires(oven, 1).post();

E.requires(oven, 2).post();

// Find Solution

schedule.scheduleActivities();

schedule.displayActivities();

SOLUTION:

A[5 -- 1 --> 6) requires oven[2]

B[3 -- 4 --> 7) requires oven[1]

C[7 -- 4 --> 11) requires oven[1]

D[0 -- 2 --> 2) requires oven[1]

E[6 -- 4 --> 10) requires oven[2]

Open Source Software

 JSR 331: “Constraint Programming API”

an official Java Community Process

standard www.jcp.org
• Comes with several open source implementations

• Free Download: http://openrules.com/jsr331

 Rule Solver: a component of OpenRules,

an open source Business Decision

Management System www.openrules.com

11

http://www.jcp.org/
http://openrules.com/jsr331
http://www.openrules.com/

Example “House Construction”

© 2012 OpenRules, Inc. 12

House construction requires the following activities

with fixed durations and precedence constraints:

Objective: Move in ASAP!

Decision

© 2012 OpenRules, Inc. 13

Top-level Decision “Schedule Activities” with 3

sub-decisions:

Sub-Decisions 1 and 2

© 2012 OpenRules, Inc. 14

Define Schedule with a makespan 30 days:

Define Activities:

Sub-Decision 3

© 2012 OpenRules, Inc. 15

Define Precedence Constraints:

The decision model is ready to be executed!

Execute Decision Model

© 2012 OpenRules, Inc. 16

Run Rule Solver:

masonry [0 -- 7 --> 7)

carpentry [7 -- 3 --> 10)

roofing [10 -- 1 --> 11)

plumbing [7 -- 8 --> 15)

ceiling [7 -- 3 --> 10)

windows [11 -- 1 --> 12)

façade [15 -- 2 --> 17)

garden [15 -- 1 --> 16)

painting [0 -- 2 --> 2)

movingIn [17 -- 1 --> 18)

Note: We actually defined “WHAT” and relied on the default “HOW”!

House Construction with a Worker

© 2012 OpenRules, Inc. 17

 Let’s assume that all of the activities

require a Worker in order to be processed

 Now we cannot schedule two activities at

the same time because the Worker can

perform only one task at a time!

Decision

© 2012 OpenRules, Inc. 18

We need to add two more sub-decisions (4) and (5)

to our previous decision:

(4)

(5)

Sub-Decision 4

© 2012 OpenRules, Inc. 19

Define a worker as a recoverable resource with

maximal capacity equal to 1 day:

Sub-Decision 5

© 2012 OpenRules, Inc. 20

Define resource constraints:

Each activity requires the resource “Worker”:

Execute Decision Model

© 2012 OpenRules, Inc. 21

Run Rule Solver:

masonry[0 -- 7 --> 7) requires Worker[1]

carpentry[7 -- 3 --> 10) requires Worker[1]

roofing[10 -- 1 --> 11) requires Worker[1]

plumbing[11 -- 8 --> 19) requires Worker[1]

ceiling[19 -- 3 --> 22) requires Worker[1]

windows[22 -- 1 --> 23) requires Worker[1]

façade[23 -- 2 --> 25) requires Worker[1]

garden[25 -- 1 --> 26) requires Worker[1]

painting[26 -- 2 --> 28) requires Worker[1]

movingIn[28 -- 1 --> 29) requires Worker[1]

House Construction with a Worker

and Limited Budget

© 2012 OpenRules, Inc. 22

 Now along with worker constraints, we

have to consider budget constraints. Each

activity requires the payment of $1,000 per

day

 A bank agreed to finance the house

construction for the total amount of

$30,000. However, the sum is available in

two installations:

– $15,000 is available at the start of the project

– $15,000 is available 15 days afterwards

Decision

© 2012 OpenRules, Inc. 23

We need to add two more sub-decisions (4) and (5)

to our previous decision :

(4)

(5)

(6)

Sub-Decision 4

© 2012 OpenRules, Inc. 24

Define two resources:

- a worker as a recoverable resource with maximal

capacity equal to 1 day

- A budget as a consumable with maximal

capacity $30,000

Sub-Decision 5

© 2012 OpenRules, Inc. 25

We already specified maximal capacity of the

resource budget. So, it is enough to specify the limit

$15,000 for the first 15 days:

Sub-Decision 6

© 2012 OpenRules, Inc. 26

The extended table

“ResourceRequirement

Constraints”:

Execute Decision Model

© 2012 OpenRules, Inc. 27

Run Rule Solver:

masonry[0 -- 7 --> 7) requires Worker[1] requires Budget[1000]

carpentry[7 -- 3 --> 10) requires Worker[1] requires Budget[1000]

roofing[10 -- 1 --> 11) requires Worker[1] requires Budget[1000]

plumbing[11 -- 8 --> 19) requires Worker[1] requires Budget[1000]

ceiling[19 -- 3 --> 22) requires Worker[1] requires Budget[1000]

windows[22 -- 1 --> 23) requires Worker[1] requires Budget[1000]

façade[23 -- 2 --> 25) requires Worker[1] requires Budget[1000]

garden[25 -- 1 --> 26) requires Worker[1] requires Budget[1000]

painting[26 -- 2 --> 28) requires Worker[1] requires Budget[1000]

movingIn[28 -- 1 --> 29) requires Worker[1] requires Budget[1000]

House Construction with Alternative

Resources

© 2012 OpenRules, Inc. 28

 Let’s assume that we have three workers Joe, Jim,

and Jack with different skills

 Each job requires only one of these workers

depending on their skills:

masonry requires Joe or Jack

carpentry requires Joe or Jim

plumbing requires Jack

ceiling requires Joe or Jim

roofing requires Joe or Jim

painting requires Jack or Jim

windows requires Joe or Jim

façade requires Joe or Jack

garden requires Joe or Jack or Jim

movingIn requires Joe or Jim.

Workers are alternative resources!

Decision

© 2012 OpenRules, Inc. 29

We need to add two more sub-decisions (4) and (5)

to our previous decision :

(4)

(5)

Sub-Decision 4

© 2012 OpenRules, Inc. 30

The sub-decision “Define Workers” adds 3

alternative resources that should be specified as

special “disjunctive” resources:

Sub-Decision 5

© 2012 OpenRules, Inc. 31

This decision table is similar to previous

“ResourceRequirementConstraint” tables but lists different

alternative resources separated by the OR-sign “|”:

Execute Decision Model

© 2012 OpenRules, Inc. 32

Rule Solver will produces new results telling

exactly “who does what”:

masonry[0 -- 7 --> 7) requires Jack[1]

carpentry[7 -- 3 --> 10) requires Jim[1]

roofing[10 -- 1 --> 11) requires Jim[1]

plumbing[7 -- 8 --> 15) requires Jack[1]

ceiling[7 -- 3 --> 10) requires Joe[1]

windows[11 -- 1 --> 12) requires Jim[1]

façade[15 -- 2 --> 17) requires Jack[1]

garden[15 -- 1 --> 16) requires Jim[1]

painting[0 -- 2 --> 2) requires Jim[1]

movingIn[17 -- 1 --> 18) requires Jim[1]

Benefits

 Executable Decision Models

 No rule languages to learn

– no coding is required

 No proprietary GUI for rules management

– business analysts create and execute decision

models using Excel or Google Docs

 No IT involvement in business logic

 Easy to use and to integrate with Java/.NET

© 2012 OpenRules, Inc. 33

How Rule Solver Works

 Rule Solver reads and

validates an Excel-based

decision model

 Rule Solver generates “on the

fly” a constraint satisfaction

problem using the standard

Constraint Programming API

“JSR-331”

 Rule Solver solves the

problem using a JSR-331

compliant constraint solvers

© 2012 OpenRules, Inc. 34

Decision Model

Generator of Constraint

Satisfaction Problems

Constraint-based

Rule Engine

Optimal Results

http://jcp.org/en/jsr/detail?id=331
http://jcp.org/en/jsr/detail?id=331
http://jcp.org/en/jsr/detail?id=331

Off-the-shelf Constraint

Solvers
 CP solvers are very powerful tools that utilize the results of

the last 25 years R&D done by CP experts around the

globe

 Rule Solver is based on the JSR-331 standard that allows

a user to switch between different underlying CP solvers

without any changes in the decision model

 Modeling facilities of Rule Solver are simple, intuitive,

extendable, and oriented to business analysts (as well as

programmers)

 However, internal implementations of the resource

requirement constraints and search strategies can be very

complex and for large-scale problems special search

strategies may be required

© 2012 OpenRules, Inc. 35

Conclusion

 Tabular decision models can be successfully used

even for complex scheduling and resource

allocation problems

 Concentrating on “WHAT” rather than on “HOW” is

a natural approach for a modeling environment

such as Rule Solver that is oriented to subject

matter experts

 At the same time, Rule Solver provides a special

Java API to do more complex modeling in Java or

mix both approaches

 You may download and try open sourced

Rule Solver from www.openrules.com

© 2012 OpenRules, Inc. 36

http://www.openrules.com/

