
Java Community Process

www.jcp.org

October-2012

JSR-331
Java Constraint Programming API

USER MANUAL

Version:

1.1.0

Status:

Maintenance Release

Specification/Maintenance Lead:

Jacob Feldman, OpenRules, Inc.

JSR-331: Constraint Programming API

2

Table of Contents

Introduction .. 4

Document Conventions .. 4

Installation ... 4

Using a Standalone Version .. 5

Working under Eclipse IDE ... 6

Current JSR-331 Implementations ... 6

Implementation Structure ... 8

Application Deployment Model.. 9

Constraint Satisfaction Problem (CSP) .. 10

Formal Definition ... 10

Major JSR-331 Concepts .. 10

Introductory Example .. 11

Problem Definition Concepts ... 13

Interface “Problem” .. 13

Creating Variables .. 13

Creating and Posting Constraints ... 14

Common Methods ... 15

Common Interface “ConstrainedVariable” ... 16

Constrained Integer Variables “Var” .. 17

Creating Integer Variables... 17

Manipulating Integer Variables .. 20

Arithmetic Operations with Integer Variables ... 20

Constrained Boolean Variables .. 22

Constrained Real Variables ... 22

Constrained Set Variables ... 22

Defining Constraints .. 22

JSR-331: Constraint Programming API

3

Common Interface “Constraint” ... 23

Common Implementation “Constraint” ... 25

Posting Constraints .. 26

Example of a Problem with Various Constraints ... 26

Linear Constraints .. 28

All Different Constraint ... 29

Element Constraints ... 30

Cardinality Constraints.. 31

Global Cardinality Constraints .. 32

Min/Max Constraints .. 33

More Constraints .. 33

User-Defined Constraints... 34

Example “SEND + MORE = MONEY” .. 35

Problem Resolution Concepts .. 36

Interface “Solver” .. 37

Example of Constraint Relaxation Problem ... 41

Interface “SearchStrategy” .. 42

Strategy Execution List ... 43

Adding Non-Search Strategies .. 44

Variable Selectors ... 45

Value Selectors ... 47

More Search Strategies .. 49

Interface “Solution” .. 49

Solution Iterator ... 51

More Implementation Examples ... 53

Simple Arithmetic Problem ... 53

Queens Problem .. 54

JSR-331: Constraint Programming API

4

Warehouse Construction Problem ... 56

INTRODUCTION
Constraint Programming (CP) is a programming paradigm which provides useful

tools to model and efficiently solve constraint satisfaction and optimization

problems. Today CP is a proven optimization technique and many CP solvers

empower real-world business applications in such areas as scheduling, planning,

configuration, resource allocation, and real-time decision support.

The JSR-331 “Constraint Programming API” is a Java Specification Request being

developed under the Java Community Process rules (www.jcp.org). It specifies a Java

runtime API for Constraint Programming. JSR-331 was approved by JCP Executive

Committee on March-2012.

This document is a user manual that explains how to install and use JSR-331 with

different compliant CP solvers. The document is aimed at business application

developers who will use the CP API to develop real-world decision support application

using the standard, vendor-neutral, Java interface.

DOCUMENT CONVENTIONS
The regular Century Schoolbook font is used for information that is prescriptive by this

specification.

The italic Century Schoolbook font is used for notes clarifying the text

The Courier New font is used for code examples.

INSTALLATION
The JSR-331 is available for downloads from the JCP Download Page at

http://jcp.org/en/jsr/summary?id=331. You will download a zip file jsr331.zip that

includes:

- Sources with examples of constraint satisfaction and optimization problems inside

the folder “src/org.jcp.jsr311.samples”

- Libraries with jar files inside the folder “lib”:

o jsr331.jar – JSR331 interfaces (javax.constraints) and common, solver

independent implementations (javax.constraints.impl)

o logging/*.jar – Apache Logging jars

o choco/*.jar – jars for Choco’s implementation of the JSR-331

http://jcp.org/en/jsr/results?id=5311
http://jcp.org/en/jsr/summary?id=331

JSR-331: Constraint Programming API

5

o constrainer/*.jar – jars for Constrainer’s implementation of the JSR-331

o jsetl/*.jar – jars for JSetL’s implementation of the JSR-331

o linear/*.jar – jars for Linear solvers.

All JSR-331 related jars come with the proper sources, so a user may easily debug not only

his/her own code but look at the actual implementations. The software is provided under the

terms of open source licenses included in the folders for the proper solvers.

Using a Standalone Version
You may use JSR-331 directly from your file system. The folder “jsr331” contains batch

files that can be used to run different examples. For example, "runBins.bat" will execute

the example jsr331/src/org/jcp/jsr331/samples/Bins.java. All batch files are

based on the file "run.bat":

@echo off
cd %~dp0
if not "%1" == "" goto defined
set PROGRAM=org.jcp.jsr331.samples.SendMoreMoney
goto run
:defined
set PROGRAM=org.jcp.jsr331.samples.%1
:run
echo Run %PROGRAM% ...
set LIB=../org.jcp.jsr331.tck/lib
set LOGLIBS=%LIB%/logging/commons-logging-1.1.jar;%LIB%/logging/commons-
logging-api-1.1.jar;%LIB%/logging/log4j-1.2.15.jar

rem set
SOLVER=../org.jcp.jsr331.tck/lib/constrainer/jsr331.constrainer.jar;../org.jcp
.jsr331.tck/lib/constrainer/constrainer.light.jar
set SOLVER=./lib/choco/jsr331.choco.jar;./lib/choco/choco-solver-2.1.5-
20120603-with-sources.jar
rem set SOLVER=./lib/jacop/jsr331.jacop.jar;./lib/jacop/jacop-3.0.jar
rem set SOLVER=./lib/jsetl/jsr331.jsetl.jar;./lib/jsetl/jsetl.jar

set LPCOMMON=../org.jcp.jsr331.linear/lib/jsr331.linear.jar
set OPTIONS=
rem set SOLVER=../org.jcp.jsr331.linear.glpk/lib/jsr331.glpk.jar;%LPCOMMON%
rem set SOLVER=../org.jcp.jsr331.linear.cplex/lib/jsr331.cplex.jar;%LPCOMMON%
rem set
SOLVER=../org.jcp.jsr331.linear.lpsolve/lib/jsr331.lpsolve.jar;%LPCOMMON%
rem set SOLVER=../org.jcp.jsr331.linear.coin/lib/jsr331.coin.jar;%LPCOMMON%
rem set SOLVER=../org.jcp.jsr331.linear.ojAlgo/lib/ojalgo.jar;%LPCOMMON%

rem set OPTIONS=-DLP_SOLVER_OPTIONS="set limits time 12000 set limits
stallnodes 1000 set limits gap 1.05 set heuristics emphasis aggressive"
rem set SOLVER=../org.jcp.jsr331.linear.scip/lib/jsr331.scip.jar;%LPCOMMON%

rem set OPTIONS=-DLP_SOLVER_OPTIONS="Threads=1 Cuts=2 timelimit=15000"
rem set
SOLVER=../org.jcp.jsr331.linear.gurobi/lib/jsr331.gurobi.jar;%LPCOMMON%

JSR-331: Constraint Programming API

6

set LIBS=./bin;%LIB%/jsr331.jar;%SOLVER%;%LOGLIBS%
java -Xms1024m -Xmx1024m %OPTIONS% -classpath "%LIBS%" %PROGRAM%
echo done
pause

To switch between CP solvers you need to modify the file run.bat. For example, the above

text defines SOLVER as "constrainer". To switch to "choco" put "rem " in front of

"set SOLVER=./lib/constrainer/…" and remove "rem " in front of "set

SOLVER=./lib/choco/…".

If you work with UNIX/LINUX you need to replace *.bat files with similar *.sh files.

Working under Eclipse IDE

To use the JSR-331 with Eclipse IDE, simply import the folder "jsr331" into your Eclipse

workspace. You may run all samples directly from Eclipse by selecting their sources with

a right-click and then "Run as Java Application".

To switch between underlying solvers, just select the Project Properties, and simply

change Libraries inside Java Build Path.

Current JSR-331 Implementations
The current list of JSR-331 implementations is presented on the following diagram

below. Greyed out solvers are consider for future implementations.

http://eclipse.org/

JSR-331: Constraint Programming API

7

The current release includes three implementations that are based on open source CP

solvers:

 Choco™ (BSD license)

 Constrainer™ (GNU LGPL license)

 JSetL™ (GNU GPL license)

One more CP-based implementation (JaCoP™) is temporarily withdrawn.

There are also seven implementations that are based on the following LP tools:

Commercial LP Solvers:

 IBM CPLEX

 GUROBI

Open Source LP Solvers:

 SCIP

 GLPK

http://choco.sourceforge.net/
http://sourceforge.net/projects/openl-tablets/?source=directory
http://cmt.math.unipr.it/jsetl.html
http://jacop.osolpro.com/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.gurobi.com/
http://scip.zib.de/
http://www.gnu.org/software/glpk/

JSR-331: Constraint Programming API

8

 COIN

 LP_SOLVE

 OJALGO.

More implementations will be included in the standard installation as they become

available.

Implementation Structure
Any implementation of the JSR-331 specification is based on a concrete CP or LP solver

and provides implementation classes for all interfaces defined in the package

“javax.constraints”. Some implementation classes directly implement the standard

interfaces and others can be inherited from common implementations provided in the

specification package “javax.constraints.impl”.

The JSR-331 requires any implementation to provide as a minimum a strictly defined list

of implementation classes within the following Java packages:

Java Package Description

javax.constraints.impl Java classes such as Problem and Solver

that provide final implementations for

problem definition and resolution concepts

and methods. These implementation

classes can be inherited from the common

(usually abstract) classes defined in the

package with the same name but on the

specification level, e.g. class
javax.constraints.impl.Problem

extends
javax.constraints.impl.AbstractP

roblem that implements
javax.constraints.Problem

javax.constraints.impl.constraint This is a “Library of Constraints” that

contains implementations of basic and

global constraints which are based on

concrete CP solvers

javax.constraints.impl.search This is a “Library of Search Strategies”

that contains implementations of search

strategies which are based on concrete CP

solvers.

Additionally every implementation may also provide its own (“native”) constraints and

search strategies assuming that they follow the standardized interfaces

javax.constraints.Constraint and javax.constraints.SearchStrategy. A

user should be aware if s/he uses a solver-specific constraints or search strategies, s/he

https://projects.coin-or.org/Clp/
http://lpsolve.sourceforge.net/5.0/
http://ojalgo.org/

JSR-331: Constraint Programming API

9

commits to this particular solver: the concepts not included in the standard may not be

available in another solver.

The fact that all JSR-331 implementations will use the same names for packages, major

classes and methods will allow business application developers to easily switch between

different implementations without any changes in the application code. They can write

application-specific constraint-based engines once using only common CP API and use

different CP solvers by changing only implementation-specific jar-files in their classpath.

Note. An ability to switch between underlying solvers with “no changes in the application

code” comes with a price: the fixed naming convention for implementation packages means

that JSR-331 based applications cannot mix two different implementations at the same

application code. The choice of an underlying implementation is defined only by a jar file

in the application classpath.

Application Deployment Model
The deployed business applications that utilize the JSR-331 API require the following

jar-files to be added to their classpaths:

- jsr331.jar: includes all standard specification interfaces and classes

- jsr331.<solver>.jar: includes all implementation specific classes

- <solver>.jar: include all classes for the CP solver based on which this

implementation was created.

For example, a CP-based deployment that utilize Constrainer will need the following

jars:

- jsr331.jar

- jsr331.constrainer.jar

- constrainer.light.jar

For example, a LP-based deployment that utilize Gurobi will need the following jars:

- jsr331.jar

- jsr331.linear.jar

- jsr331.gurobi.jar

Note. The JSR-331 does not depend on a particular implementation of logging

mechanisms and does not need logging jars. However, all JSR-331 implementations

provide their own logging by implementing only basic methods log(string), debug(string),

and error(string) inside the class Problem. For convenience, the standard installation

includes open source Apache Logging jar files. If you use them do not forget to add the

proper “log4j.properties” file to your classpath.

JSR-331: Constraint Programming API

10

CONSTRAINT SATISFACTION PROBLEM (CSP)
Many real-life problems that deal with multiple alternatives can be presented as

constraint satisfaction problems (CSP) and can be successfully solved by applying

different Constraint Programming tools.

Formal Definition
Formally a Constraint Satisfaction Problem is defined by

a set of variables V1, V2, … Vn, and

a set of constraints, C1, C2, … Cm.

Each variable Vi has a non-empty domain Di of possible values. Each constraint Cj

involves some subset of the variables and specifies the allowable combinations of values

for that subset. A state of the problem is defined by an assignment of values to some or

all of the variables. A solution to a CSP is an assignment that satisfies all the

constraints. If a CSP requires a solution that maximizes or minimizes an objective

function it is called “constraint optimization problem”. We will use an abbreviation CSP

for both types of problems.

The main CSP search technique interleaves various forms of search with constraint

propagation, in which infeasible values are removed from the domains of the variables

through reasoning about the constraints.

Major JSR-331 Concepts
JSR-331 defines all necessary Java concepts to allow a user to represent and solve

different Constraint Satisfaction Problems. JSR-331 supports a clear demarcation

between two different CSP parts:

1) Problem Definition represented by the interface Problem

2) Problem Resolution represented by the interface Solver.

Correspondingly, all major CP concepts belong to one of these two categories. At the very

high level a business user is presented with only 6 major concepts:

Problem

Constrained Variable

Constraint

Solver

Search Strategy

Solution

While different CP solvers use different names and representations for these major

JSR-331: Constraint Programming API

11

concepts, semantically these 6 concepts are invariants for the most of them. JSR-331

provides a unified naming convention and detailed specifications for these concepts.

The Problem Definition does not “know anything” about the Problem Resolution. An

instance of the class Problem may exists without any Solver being created. Contrary, an

instance of the class Solver may be created only base on a particular problem. During

solution search, a solver can change a problem state (such as domains of constrained

variables). It is the responsibility of a particular solver to keep (or not) different problem

states based on the selected search strategy it defines.

Introductory Example
Let’s consider a simple arithmetic problem:

There are four integer variables X, Y, Z, and R that may take values 1, 2, 3, 4, 5, 6, 7,

8, 9, or 10. Considering that all variables should have different values, find a solution

that satisfies the following constraints:

X < Y

X + Y = Z

Z > 4

3X + 4Y -5Z + 2R > 0

X + Y + Z + R >= 15

2X – 4Y + 5Z - R > X*Y

The following code demonstrates how this problem can be defined and solved using JSR-

331 API.

import javax.constraints.*;

public class Test {

 Problem p = ProblemFactory.newProblem("Test");

 public void define() { // PROBLEM DEFINITION

 //======= Define variables

 Var x = p.variable("X",1,10);

 Var y = p.variable("Y",1,10);

 Var z = p.variable("Z",1,10);

 Var r = p.variable("R",1,10);

 Var[] vars = { x, y, z, r };

 //======= Define and post constraints

 try {

 p.post(x,"<",y); // X < Y

p.post(z,">",4); // Z > 4

p.post(x.plus(y),"=",z); // X + Y = Z

 p.postAllDifferent(vars);

 int[] coef1 = { 3, 4, -5, 2 };

p.post(coef1,vars,">",0); // 3x + 4y -5z + 2r > 0

 p.post(vars,">=",15); // x + y + z + r >= 15

JSR-331: Constraint Programming API

12

 int[] coef2 = { 2, -4, 5, -1 };

p.post(coef2,vars,">",x.multiply(y));// 2x-4y+5z-r > x*y

 } catch (Exception e) {

 p.log("Error posting constraints: " + e);

 System.exit(-1);

 }

 }

 public void solve() { // PROBLEM RESOLUTION

 p.log("=== Find Solution:");

 Solver solver = p.getSolver();

 Solution solution = solver.findSolution();

 if (solution != null)

 solution.log();

 else

 p.log("No Solution");

 solver.logStats();

 }

 public static void main(String[] args) {

 Test t = new Test();

 t.define();

 t.solve();

 }

}

This code will produce the results that may look like below:

=== Find Solution:

Solution #1:

 X[1] Y[4] Z[5] R[6]

*** Execution Profile ***

Number of Choice Points: 3

Number of Failures: 1

Occupied memory: 4503712

Execution time: 15 msec

Instead of finding one solution of the problem we may try to find an optimal solution. For

example, we may find a solution that maximizes the sum of all 4 variables in the array

“vars”. To do this it is enough to replace the line

Solution solution = solver.findSolution();

with

Solution solution =

 solver.findOptimalSolution(Objective.MAXIMIZE, p.sum(vars));

The modified code will produce the results that may look like below:

Solution #8:

 X[4] Y[6] Z[10] R[9] sum[29]

JSR-331: Constraint Programming API

13

PROBLEM DEFINITION CONCEPTS
In the JSR-331 Problem Definition uses the following interfaces to represent a CSP with

different constrained variables and constraints:

- Problem

- Var

- VarBool

- VarReal

- VarSet

- Constraint.

Below we describe major methods of the CP interfaces and provide examples of their use.

The descriptions will include the column “Implementation Level” that states on which

level (Common or CP solver) these methods should be implemented. The methods that

are not normative are marked as “optional”.

Interface “Problem”
The JSR-331 provides a generic interface Problem for any constraint satisfaction or

optimization problem that allows a user to create and access major problem’ objects. A

problem serves as a factory for creation of constrained variables and constraints. Every

variable and every constraint belongs to one and only one problem. For example, the

code snippet

Problem p = ProblemFactory.newProblem("Test");

 Var x = p.variable("X",1,10);

creates an instance “p” of the interface javax.constraints.Problem. The class

ProblemFactory is a factory that has only one method newProblem for creation of new

problems. The actual implementation class javax.constraints.impl.Problem is

defined by a particular JSR-331 implementation. Then the problem p creates a new

constrained integer variable x with the domain [1,10] known under the name “X”. Here

the domain [1,10] is a set of integers from 1 to 10 without omissions. The variable x is

automatically added to the problem.

The JSR-331 uses the Problem interface as a factory to standardize the signatures of the

main methods that allow an end user to create constrained variables and constraints.

Creating Variables

All factory methods for constrained variables start with the word “variable” and newly

created variables are always added to the problem. It means that you always may find

the added variable using the method like p.getVar(“X”) and this variable will be

automatically added to the default decision variables and future solutions (if any).

To create an integer constrained variable (with adding it to the problem) is to use the

method variable(name, min,max) of the interface Problem. For example, the code

Var x = p.variable("X",1,10);

The list of the main Problem’s methods for creation of constrained integer variables is

JSR-331: Constraint Programming API

14

presented in the section “Creating Constrained Variables”.

Creating and Posting Constraints

All factory methods for creating and posting constraints start with the word “post”.

Here is the current list of the method names used to create and post constraints:

 postLinear or simply post

 postAllDiff

 postElement

 postCardinality

 postGlobalCardinality

 postIfThen

 postMax

 postMin

Here are examples for creating and posting constraints for the problem p:

p.post(x,"<",y); // the same as postLinear(x,"<",y);
 p.post(x.plus(y),"=",z);

p.postAllDifferent(vars);

p.postElement(vars,indexVar, "=", 5);

p.postCardinality(vars,3, ">", 0);

Thus, for the most popular linear constraints the suffix “Linear” in the method name

“postLinear” may be omitted.

The linear constraint

p.post(x.plus(y),"=",z);

may also be created and posted as follows:

p.postLinear(x.plus(y),"=",z);

or
p.linear(x.plus(y),"=",z).post();

The interface Problem also includes convenience methods called “linear” that allow a

user to create linear constraints without posting them. For example, when posting

conditional constraints you want to be able to create constraints but do not post them.

Here is a sample code:

// red bin contains at most 1 wood component

Constraint c1 = linear(type,"=",red);

Constraint c2 = linear(counts[wood],"<=",1);

postIfThen(c1,c2);

The lists of the main Problem’s methods for constraint creation are presented in the

section “Defining Constraints”.

JSR-331: Constraint Programming API

15

Common Methods

The Problem interface also specifies general methods for logging, versioning, creating a

solver, and additional convenience methods – see the JSR-331 javadoc. Here are some of

such methods:

Methods of the interface Problem Impl.

Level

public String getAPIVersion();

This method returns the current version of the JSR-331 API

Common

public String getImplVersion();

This method returns the current version of the concrete JSR-331

implementation

CP

solver

public Solver getSolver()

This method returns an instance of a Solver associated with this problem

and that will be used to solve the problem. If a Solver’s instance is not

defined yet, this method creates a new Solver (lazy instantiation) and

associates it with the problem.

Common

public void log(String text)

This method logs (displays) the “text” to the default log (as defined by a

selected implementation).

CP

solver

public void log(Var[] vars)

This method logs (displays) all variables from the array vars” to the default

log.

CP

solver

public Var min(Var var1, Var var2)

This method returns a new variable constrained to be the minimum of

variables var1 and var2

Common

public Var max(Var var1, Var var2)

This method returns a new variable constrained to be the maximum of

variables var1 and var2

Common

public Var min(Var[] vars);

This method creates a new Var constrained to be the minimum of all

variables in the array “vars”

Common

public Var max(Var[] vars);

This method creates a new Var constrained to be the maximum of all

variables in the array “vars”

Common

JSR-331: Constraint Programming API

16

public Var sum(Var[] vars);

This method creates a new Var constrained to be the sum of all variables

in the array “vars”

Common

public Var scalProd(int[] values, Var[] vars);

This method creates a new Var constrained to be the scalar product of the

array of values and the array of variables “vars”

Common

public Var element(int[] values, Var indexVar);

This method creates a new constrained variable that is an element of the

integer array “values” with an index defined by another constrained

variable “indexVar”

Common

public Var element(Var[] vars, Var indexVar);

This method creates a new constrained variable that is an element of the

array of constrained variables “vars” with an index defined by another

constrained variable “indexVar”

Common

Common Interface “ConstrainedVariable”
The interface “ConstrainedVariable” defines common methods for all types of constrained

variables. Here is a summary of these methods:

Method of the interface

ConstrainedVariable

Comment Impl.

Level

public void

setName(String name)
Defines the name of this variable Common

public String

getName()
Returns the name of this variable Common

public void

setImpl(Object impl)

This method defines a concrete

implementation of this variable provided

by a specific CP solver

Common

public

Object getImpl()

This method returns a concrete

implementation of this variable provided

by a specific CP solver

Common

public void setObject

(Object obj)
This method is used to attach a Business

Object to this variable

Common

public Object

getObject()
This methods returns a Business Object

associated with this variable

Common

The methods setObject and getObject provide an ability to associate any application

objects with constrained variables. These objects may be effectively used by application

developers to define custom constraints and variable/value selectors.

The method setImpl is used by an underlying JSR-331 implementation to associate an

implementation object with an instance of a standard constrained variable. It is used

http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setImpl(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setImpl(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setBusinessObject(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#getBusinessObject()

JSR-331: Constraint Programming API

17

internally by JSR-331 implementations but also provides a user an ability to switch to an

implementation level by using the method getImpl(). While it violates a solver

independence principle, in certain situations a user still may want to take an advantage

of a selected CP solver by casting implementation objects to solver specific classes and

using them directly with additional methods provided by this particular solver.

The standard interface defines the following sub-interfaces of the common interface

“ConstrainedVariable”:

- Var (integer)

- VarBool (boolean)

- VarReal (floating-point)

- VarSet (set).

Constrained Integer Variables “Var”

Constrained integer variables are the most popular type of the constrained variable (the

reason why the name of this type “Var” does not have an additional identifier like

“VarInt”). Each variable of the type Var has a finite domain of integer values.

Each JSR-331 implementation provides implementation of the major Var methods in the

class

 javax.constraints.impl.Var

Creating Integer Variables

The standard interface Problem provides multiple methods for creating new variables of

the type Var. For example, a user may write:

Var digitVar = problem.variable(”A”, 0, 9);

A new constrained integer variable with an initial domain [0;9] will be created and added

to the problem under the name “A”. Here is the list of the major methods from the

interface Problem that deal with creation and accessing constrained integer variables:

Methods of the interface Problem Impl.

Level

public Var variable(String name, int min, int max)

This method creates a new Var with the name “name” and a domain

[min;max]. It also adds a newly created variable to the problem, so later on

you may find this variable by name using the Problem’s method

getVar(name). There is a similar method without “name”.

CP

solver

public Var variable(String name, int[] domain)

This method creates a new Var with the name “name” and a given

“domain” (an array of regular integers). It also adds a newly created

variable to the problem. There is a similar method without “name”.

Common

or CP

solver

JSR-331: Constraint Programming API

18

public Var[] variableArray(String name, int min, int max,

int size)

This method creates an array of constrained integer variable with the

name like “name[i]” and a domain [min;max]. The total number of

variables in the array is equal to “size”. It also adds this array to the

problem, so later on a user may find this array by name using the

Problem’s method getVarArray(name).

Common

public Var variable(String name, int min, int max,

DomainType type)

This method creates a new Var with the name “name” and a domain

[min;max]. The domain type of this variable is defined by the parameter

“type” – see below. It also adds a newly created variable to the problem.

public void setDomainType(DomainType type)

This method sets a domain type (DOMAIN_SMALL, DOMAIN_MIN_MAX,

DOMAIN_SPARSE, or DOMAIN_OTHER) that will be used as the default for

subsequent creation of variables using var(…) and varArray(…) methods

Common

public Var add(Var var)

This method adds already created variable of the type Var to the problem

making its available for the for the proper method getVar(“name”). All

added variables will also be included in the future solutions of the problem.

Common

public Var add(String name, Var var)

This method adds already created variable of the type Var to the problem

giving this variable name “name”.

Common

public Var getVar(String name)

This method returns a Var that previously was added to the problem under

the name “name”

Common

public Var[] getVars()

This method returns all variables of the type Var that were previously

added to the problem

Common

Any JSR-331 implementation provides at least this standard constructor

public Var(Problem problem, String name, int min, int max)

It means that a user may also create and add a variable this way:

Var digitVar = new Var(problem, ”A”, 0, 9);

problem.add(digitVar);

In this case a user should add import javax.constraints.impl.Var. However, an

implementation may use other forms of constructors too. So, it is not recommended to use

constructors directly because it may potentially make a commitment to a selected

JSR-331: Constraint Programming API

19

implementation diminishing the value of the standardization.

Domain Types

Integer constrained variables may have different domain types defined by the following

enum:

public enum DomainType {

 DOMAIN_SMALL,

 DOMAIN_MIN_MAX,

 DOMAIN_SPARSE,

 DOMAIN_OTHER

}

This classification assumes the following domain types:

DOMAIN_SMALL used for relatively small domains

DOMAIN_MIN_MAX used for large domains that mainly keep track of minimal and

maximal values inside domains

DOMAIN_SPARSE used for domains with a lot of missing values between minimal and

maximal values

DOMAIN_OTHER used for domains that may have a special meaning in any particular

implementation.

A user may specify a certain domain type when creating a variable as follows:

Var var = p.variable(”A”,0,9,DomainType.DOMAIN_SMALL);

The common default domain type is DOMAIN_SMALL but an implementation may use a

different default. A user may redefine a default domain type by using the following

Problem’s method:

public void setDomainType(DomainType type);

For example, if a user writes

setDomainType(DomainType.DOMAIN_SPARSE);

then all variables created after (!) this statement by default will have the domain type

DOMAIN_SPARSE. After creating a few “sparse” variables, a user may switch to different

domain type.

A user may also create constrained integers variables by listing all possible domain

values like in this example:

int[] domain = new int[] {1,2,4,7,9};

Var var = p.variable(”A”, domain);

To create an array of 100 constrained integers variables with the domain [0;10], a user

may write:

Var[] vars = p.variableArray(”A”, 0, 10, 100);

Note. Any JSR-331 implementation may provide other Var constructors that may take

JSR-331: Constraint Programming API

20

advantage of its specific features. At the same time a user should be warned that the use

of CP solver specific constructors renders the application code dependent on that

particular implementation. As more Var constructors become commonly acceptable for

different implementations, they will be added to the standard Problem interface.

Manipulating Integer Variables

The Var interface provides the following methods that allow a user to evaluate the state

of constrained integer variables:

- int getDomainSize() returns the current number of elements in the domain

- DomainType getDomainType() returns the domain type

- boolean isBound() returns true if the variable is already instantiated with a

single value (domain’s size is 1)

- int getValue()returns a value with which the variable was instantiated. If this

variable is not bound, this method throws a runtime exception

- int getMin() returns the minimal value from the current domain

- int getMax() returns the maximal value from the current domain.

The JSR-331 does not allow a user to modify variables directly, e.g. using setters like

“setMin” or “setMax” – they are simply not defined. Instead a user may only post the

proper linear constraints for the problem “p”:

p.post(var,">=",min) - to set the minimal value for the current domain

p.post(var,"<=",max) - to set the maximal value for the current domain

p.post(var,"=",value) - to instantiate the variable “var” with the “value”

p.post(var,"!=",value) - to remove a value from the variable domain.

Arithmetic Operations with Integer Variables

If a user wants to impose the constraint “x + y < 10”, s/he can do it by posting this linear

constraint

p.post(x.plus(y), "<", 10);

Below is the list of the arithmetic operations defined by the interface Var that create new

constrained variables:

 Methods of the interface Var Impl.

Level

public Var plus(int value); // this + value

This method creates a new Var constrained to be the sum of this variable

and the given “value”

CP

solver

public Var plus(Var var); // this + var

This method creates a new Var constrained to be the sum of this variable

CP

solver

JSR-331: Constraint Programming API

21

and the given variable “var”

public Var minus(int value); // this - value

This method creates a new Var constrained to be the difference between

this variable and the given “value”

Common

public Var minus(Var var); // this - var

This method creates a new Var constrained to be the difference between

this variable and the given variable “var”

Common

public Var multiply(int value); // this * value

This method creates a new Var constrained to be the product of this

variable and the given “value”

CP

solver

public Var multiply(Var var); // this * var

This method creates a new Var constrained to be the product of this

variable and the given variable “var”

CP

solver

public Var divide(int value); // this / value

This method creates a new Var constrained to be the quotient of this

variable and the given “value”. It throws a Runtime Exception if value = 0

Common

or CP

solver

public Var divide(Var var) throws Exception; // this /
var

This method creates a new Var constrained to be quotient of this variable

and the given variable “var”

Common

or CP

solver

public Var mod(int value); // this % value

This method creates a new Var constrained to be the remainder after

performing integer division of this variable by the given “value”. It throws

a Runtime Exception if value = 0

Common

public Var sqr(); // this * this

This method creates a new Var constrained to be the product of this

variable and itself

Common

public Var power(int value); // this ** value

This optional method creates a new Var constrained to be this variable

raised to the power of the given “value”

Common

or CP

solver

public Var abs(); // abs(this)

This method creates a new Var constrained to be the absolute value of

this variable

CP

solver

optional

Note that all these methods only create new constrained variables but do not add them to

the problem. If necessary, it should be done explicitly with the Problem’s method

add(var).

A user should be warned that while the above operations might be convenient to create

arithmetic expressions and then post constraints on them, these operations may create

internally a lot of intermediate variables and constraints. For example, a user may

represent constraint 3x + 4y -7z > 10 as

Var exp = x.multiply(3).plus(y.multiply(4)).minus(z.multiple(7));

p.post(exp, ">", 10);

However, it may be more efficient to use this constraint instead:

JSR-331: Constraint Programming API

22

int[] coef1 = { 3, 4, -7 };

Var[] vars = { x, y, z };

p.post(coef1,vars, ">", 10);

Note. The names of the above operations correspond to the default names used by such

dynamic languages as Groovy to allow operator overloading. So, for example the above 3

lines may be replaced by only one line in Groovy:

post(x*3+y*4-z*7, ">", 10);

Constrained Boolean Variables

Boolean variables of the standard type VarBool may be considered as integer variables

with domain [0;1] where 0 stand for “false” and 1 stands for “true”.

More details will be provided in the next releases.

Constrained Real Variables

More details will be provided in the next releases.

Constrained Set Variables

More details will be provided in the next releases.

Defining Constraints

The JSR-331 specifies many major constraints that define relationships between

constrained variables. These constraints are available through the generic Problem

interface. Here are examples of predefined constraints.

1. A constraint x < y between two constrained variables for the problem “p” may be

expressed as

 p.post(x, "<", y);

2. To express the fact a sum of all variables from the array “vars” of the type Var[]

should be less than 20, a user may write:

p.post(vars, "<", 20);

3. To express the fact that four variables x, y, z, and t are subject to the constraint

3*x + 4y – 5*z + 2*t > x*y

a user may create and post the following constraint:

Var xy = x.multiply(y); // non-linear

int[] coefs = { 3, 4, -5, 2 };

Var[] vars = { x, y, z, t };

p.post(coefs, vars, ">", xy);

JSR-331: Constraint Programming API

23

4. If a user has an array of constrained variables “vars” and wants to state that all

variables inside this array are different, s/he may write:

p.postAllDifferent(vars);

All above examples use Problem’s factory methods starting with the word “post” to create

and post constraints. Posting a constraint means that this constraint will control the

domain of all involved variables. Every time when constrained variables are modified the

posted constraints defined on these variables will try to remove inconsistent values from

their domains. This process is known as constraint propagation. If some domains become

empty constraints throw exceptions. If an exception happens during the search then a

search strategy will catch such exceptions and will react according to its own logic (e.g.

continue to explore alternatives).

Depending on implementation, constraints may throw (or not) runtime exceptions during

posting. In this case a user may put all constraint postings into a try-catch block to catch

contradictory constraints – see below. However, constraint posting by itself does not

guarantee that all conflicts will be caught and it may require a search to find a solution

or prove that all posted constraints actually cannot be satisfied.

5. To express the fact that three variables x, y, and z are subject to this constraint

if (x > y) then z <= 5

a user may write:

Constraint c1 = p.linear(x, ">", y);

Constraint c2 = p.linear(z, "<=", 5);

p.postIfThen(c1,c2);

Please note that contrary to Constraint c1 = post(x, ">", y) method “linear”

only creates a constraint but does not post it.

Common Interface “Constraint”

The interface “Constraint” defines common methods for all types of constraints. Here is

a summary of these methods:

Method of the interface

Constraint

Comment Impl.

Level

void setName(String name) Defines the name of this constraint Common

String getName() Returns the name of this constraint Common

void setImpl(Object impl)

This method defines a concrete

implementation of this constraint

provided by a specific CP solver

Common

Object getImpl()

This method returns a concrete

implementation of this constraint

provided by a specific CP solver

Common

void setObject This method is used to attach any Common

http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setImpl(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setImpl(java.lang.Object)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setBusinessObject(java.lang.Object)

JSR-331: Constraint Programming API

24

(Object obj) business object to this constraint

Object getObject() This methods returns a business

object associated with this constraint

Common

void post()

This method is used to post the

constraint. If the posting was

unsuccessful, this method throws a

runtime exception.

CP

solver

void

post(ConsistencyLevel

consistencyLevel)

This method is used to post the

constraint and also specifies a

consistency level that controls the

propagation strength of this

constraint (see below). If the posting

was unsuccessful, this method

throws a runtime exception.

CP

solver

optional

Constraint

and(Constraint c)
This method creates a new

constraint “and” that is satisfied only

when “this” constraint and the

parameter-constraint “c” are both

satisfied

CP

solver

Constraint

or(Constraint c)
This method creates a new

constraint “and” that is satisfied only

when at least one of two constraints

“this” or the parameter-constraint “c”

is satisfied

CP

solver

Constraint

implies(Constraint c)
This method creates a new

constraint that states:

if this constraint is satisfied then

parameter-constraint “c” should also

be satisfied

CP

solver

Constraint negation() This method creates a new

constraint that is satisfied if and

only if this constraint is not satisfied

Common

or CP

solver

VarBool asBool() This optional method returns a new

constrained boolean variable that is

equal 1 (true) if the constraint is

satisfied and equals 0 (false) if it is

violated.

CP

solver

optional

The methods setObject and getObject provide an ability to associate and use any

application objects with a constraint..

The method setImpl is used by an underlying JSR-331 implementation to associate an

implementation object with an instance of a standard constraint. It is used internally by

JSR-331 implementations but also gives a user an ability to switch to an implementation

level by using the method getImpl(). While it violates a solver independence principle,

in certain situations a user still may want to take an advantage of a selected CP solver

by casting implementation objects to solver specific constraint classes and using them

directly with additional methods provided by this particular solver.

A user may create new constraints as combinations of the predefined constraints using

http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#getBusinessObject()

JSR-331: Constraint Programming API

25

the logical operations and, or, implies, and negation. While constraints can be

either satisfied or not they may be considered as constrained Boolean variables and the

method asBool allows a user to treat it as such. In particular, constraints as boolean

variables be used may be used to define relative measures for different constraint

violations (if any) and try to minimize the total violations – see an example below.

Note. Not all constraints have implementations for the method asBool(). If a user tries

to access a non-existing asBool method a runtime exception will be thrown.

Common Implementation “Constraint”

The JSR-331 common implementation provides the class

javax.constraints.impl.constraint.AbstractConstraint that already

contains default implementations of some of the above methods. Each JSR-331

implementation should create its own class

javax.constraints.impl.constraint.Constraint inherited from this class and

that should be considered as a base class for all other constraints defined on the CP

solver level.

There are several generic methods for creating and accessing constraints defined by the

standardized Problem interface:

Methods of the interface Problem Impl.

Level

Constraint add(Constraint constraint)

This method adds already created constraint to the problem making its

available for the for the proper method getConstraint(“name”).

Common

Constraint getConstraint(String name)

This method returns a Constraint that previously was added to the

problem under the name “name”

Common

Constraint[] getConstraints()

This method returns all constraints that were previously added to the

problem

Common

Constraint post(String name, String symbolicExpression)

This optional method creates a new constraint based on the

“symbolicExpression” such as "x*y - z < 3*r". It is assumed that all

variables in the expression were previously created under names used

within this expression. The method adds this constraint to the problem

and returns the newly added Constraint. This method throws a

RuntimeException if there is either an error inside the

“symbolicExpression” or there is no implementation for this method.

Common

or CP

solver

optional

The Problem methods that create concrete constraints such as “Linear”, “Element”,

“AllDifferent”, “Cardinality”, and “GlobalCardinality” are described below.

JSR-331: Constraint Programming API

26

Posting Constraints

A constraint has no effect until it is posted. The constraint posting is implementation

specific but usually it executes the following actions:

1) Initial constraint propagation (if any as defined by the common or solver specific

implementation);

2) Associating constraints (or their propagators, listeners, observers – different

implementations use different terms) with the involved constrained variables and

events. When such events occur the proper propagators will be woke up and

executed to remove inconsistent values from the variable domains.

The actual posting logic depends on an underlying CP solver. If the posting was

unsuccessful, the method post throws a runtime exception. So, it should be a regular

practice to put constraint posting into a try-catch block, e.g.:
try {

p.post(x,"<",y); // X < Y

p.post(x.plus(y),"=",z); // X + Y = Z

 p.postAllDifferent(vars);

 int[] coef1 = { 3, 4, -7, 2 };

p.post(coef1,vars,">",0); // 3x + 4y -7z + 2r > 0

 } catch (Exception e) {

 p.log("Error posting constraint: " + e);

 System.exit(-1);

 }

The standard allows a user to control the propagation strength of different constraints

using an additional posting parameter in this method:

void post(ConsistencyLevel consistencyLevel)

Here the ConsistencyLevel is defined as the following standard enum:

public enum ConsistencyLevel {

 BOUND, // bound consistency

 DOMAIN, // domain consistency

 VALUE, // value consistency

 OTHER // implementation-specific consistency

}

The JSR-331 does not enforce any particular consistency level leaving this decision to

implementers of different constraints. Note, that the common implementation simply

ignores the consistency level, resulting in this method being equivalent to the regular

post().

Example of a Problem with Various Constraints

Usually application developers incorporate constrained variables in their own business

objects and post constraints between them to express business relationships between yet

unknown entities. Let’s consider a popular problem: given a supply of different

components and bins of given types, determine all assignments of components to bins

JSR-331: Constraint Programming API

27

satisfying specified assignment constraints subject to an optimization criterion. Here is a

fragment of the business object Bin (a constructor only - the complete implementation is

included in the standard package org.jcp.jsr331.samples – see Bins.java):

static final int red = 0, blue = 1, green = 2;

static final int glass = 0, plastic = 1, steel = 2, wood = 3, copper = 4;

class Bin {

 public int id;

 public Var type;

 public Var capacity;

 public Var[] counts; // per component

 public Bin(Problem p, int binId) {

 id = binId;

 type = p.variable("Bin" + id + "Type", 0, binTypes.length - 1);

 p.log("Capacity constraints");

 int capacityMax = 0;

 for (int i = 0; i < binCapacities.length; i++) {

 if (binCapacities[i] > capacityMax)

 capacityMax = binCapacities[i];

 }

 capacity = p.variable("capacity", 0, capacityMax);

 p.postElement(binCapacities,type, ”=”, capacity);

 counts = new Var[components.length];

 for (int i = 0; i < components.length; i++)

 counts[i] = p.variable(countName(i), 0, capacityMax);

// Sum of counts <= capacity

 p.post(counts, ”<=”, capacity);

 p.log("Containment constraints");

 Constraint c1, c2, c3;

 // red contains at most 1 of wood

 c1 = p.linear(type,”=”,red);

 c2 = p.linear(counts[wood], ”<=”,1);

 c1.implies(c2).post();

 // green contains at most 2 of wood

 c1 = p.linear(type,”=”,green);

 c2 = p.linear(counts[wood], ”<=”,2);

 c1.implies(c2).post();

 // red can contain glass, wood, copper

 c1 = p.linear(type,”=”,red);

 c2 = p.linear(counts[plastic],”=”,0);

 c3 = p.linear(counts[steel],”=”,0);

 c1.implies(c2.and(c3)).post();

 // blue can contain glass, steel, copper

 c1 = p.linear(type,”=”,blue);

 c2 = p.linear(counts[plastic],”=”,0);

 c3 = p.linear(counts[wood],”=”,0);

 c1.implies(c2.and(c3)).post();

 // green can contain plastic, wood, copper

 c1 = p.linear(type,”=”,green);

 c2 = p.linear(counts[glass],”=”,0);

 c3 = p.linear(counts[steel],”=”,0);

 c1.implies(c2.and(c3)).post();

 // wood requires plastic

 c1 = p.linear(counts[wood],”=”,0);

 c2 = p.linear(counts[plastic],”=”,0);

JSR-331: Constraint Programming API

28

 c1.implies(c2).post();

 // glass exclusive copper

 c1 = p.linear(counts[glass],”=”,0);

 c2 = p.linear(counts[copper],”=”,0);

 c1.or(c2).post();

 // copper exclusive plastic

 c1 = p.linear(counts[copper],”=”,0);

 c2 = p.linear(counts[plastic],”=”,0);

 c1.or(c2).post();

 }

Linear Constraints

All constraints that deal with a comparison of constrained expressions use the

standardized comparison operators expressed as strings:

”<” // Less Than

”<=” // Less than or Equal to

”=” // Equal to

”>=” // Greater than or Equal to

”>” // Greater Than

”!=” // Not Equal

Here is the list of linear constraints limited to constrained integer variables:

Methods of the interface Problem Impl.

Level

Constraint linear(Var, String oper, int value)

This method creates and returns a new constraint such as “var < = value”.

For example, if “oper” is “<=” it means that variable "var" must be less or

equal to the “value”.

CP

solver

Constraint linear(Var var1, String oper, Var var2)

This method creates and returns a new constraint such as “var1 < var2”.

For example, if “oper” is ”<” it means that the variable “var1” must be less

than the variable “var2”.

CP

solver

Constraint linear(Var[] vars, String oper, int value)

This method creates and returns a new linear constraint such as

“sum(vars) < = value”. For example, if “oper” is ”<=” it means that a sum

of all of the variables from the array "vars" must be less or equal to the

“value”.

CP

solver

Constraint linear(Var[] vars, String oper, Var var)

This method creates and returns a new linear constraint such as

“sum(vars) < var”. For example, if “oper” is “<” it means that a sum of all

of the variables from the array "vars" must be less than the variable “var”.

CP

solver

JSR-331: Constraint Programming API

29

Constraint linear(int[] values, Var[] vars, String oper,

int value)

This method creates and returns a new linear constraint such as

“values*vars < value”. For example, if “oper” is “<” it means that a

scalar product of all “values” and all variables "vars" must be less than the

“value”. The arrays “values” and “vars” must have the same size otherwise

a runtime exception will be thrown.

CP

solver

Constraint linear(int[] values, Var[] vars, String oper,

Var var)

This method creates and returns a new linear constraint such as

“values*vars < var”. For example, if “oper” is “<” it means that a scalar

product of all “values” and all variables "vars" must be less than the

variable “var”. The arrays “values” and “vars” must have the same size

otherwise a runtime exception will be thrown.

CP

solver

Instead of the methods with name “linear” a user may use the method “constraint”

with the same parameters. In this case a constraint not only will be created but also

posted.

When a user post the constraint “sum(vars) < 20” in this way:

p.post(vars, ”<”, 20);

there is no assumption that an intermediate variable for the “sum(vars)” will be created

(it depends on a concrete constraint implementation). If a user actually needs this sum-

variable, s/he may write a code similar to this one:

Var sumVar = p.variable(“sum”,min,max);

p.linear(vars, ”=”, sumVar).post();

p.post(sumVar, ”<”, 20);

or easier:

p.post(sum(vars), ”<”, 20);

or even more easier:

p.post(vars, ”<”, 20);

All Different Constraint

The JSR-331 interface Problem defines a simple way to create and post the most popular

constraint commonly known as “allDifferent”:

public Constraint postAllDifferent(Var[] vars);

There is also a more compact synonym:

public Constraint postAllDiff(Var[] vars);

These methods create, post, and return a new constraint stating that all constrained

integer variables of the array "vars" must take different values from each other. There

are similar methods for other types of variables.

Note. The latest example also allows posting with different consistency levels.

JSR-331: Constraint Programming API

30

Element Constraints

The Problem interface also specifies convenience methods for creating constraints that

deal with elements of the arrays of constrained variables. If a constrained integer

variable “indexVar” serves as an index within an array “values”, then the result of the

operation “values[indexVar]” will be another constrained variable.

Consider an example when you want to limit a yet unknown loan term to be at least 36

months or more. Here is the proper constraint:

int[] loanTerms = { 12, 24, 36, 48, 72 };

Var indexVar = p.variable(“index”,0,loanTerms.length-1);

p.postElement(loanTerms,indexVar, ”>=”,36);

Similarly, in the above Bin example we used to limit bin capacity variables by posting

element-constraints based on bin type variables:

capacity = p.variable("capacity", 0, capacityMax);

p.postElement(binCapacities,type, ”=”, capacity);

While Java does not allow us to overload the operator “[]” the standard interface uses

the Problem methods to create element constraints. Here is the list of such methods

limited to integer variables:

Methods of the interface Problem Impl.

Level

Constraint postElement(int[] values, Var indexVar, String

oper, int value)

This method creates, posts, and returns a new linear constraint such as

“values[indexVar] < value”. Here "values[indexVar]" denotes a constrained

integer variable whose domain consists of integer values[i] where i is within

the domain of the "indexVar". For example, if “oper” is “<” it means that a

variable “values[indexVar]” must be less than the “value”.

CP

solver

Constraint postElement(int[] values, Var indexVar, String

oper, Var var)

This method creates, posts, and returns a new linear constraint such as

“values[indexVar] < value”. Here "values[indexVar]" denotes a constrained

integer variable whose domain consists of integer values[i] where i is within

the domain of the "indexVar". For example, if “oper” is “<” it means that a

variable “values[indexVar]” must be less than the variable “var”.

CP

solver

Constraint postElement(Var[] vars, Var indexVar, String

oper, int value)

This method creates, posts, and returns a new linear constraint such as

“vars[indexVar] < value”. Here "vars[indexVar]" denotes a constrained

integer variable whose domain consists of integer values from the domain of

the vars[i] where i is within the domain of the "indexVar". For example, if

“oper” is “<” it means that a variable “vars[indexVar]” must be less than the

“value”.

CP

solver

JSR-331: Constraint Programming API

31

Constraint postElement(Var[] vars, Var indexVar, String

oper, Var var)

This method creates, posts, and returns a new linear constraint such as

“vars[indexVar] < value”. Here "vars[indexVar]" denotes a constrained

integer variable whose domain consists of integer values from the domain of

the vars[i] where i is within the domain of the "indexVar". For example, if

“oper” is “<” it means that a variable “vars[indexVar]” must be less than the

variable “var”.

CP

solver

All possible comparison operators have been described above. These constraints do NOT

assume a creation of intermediate variables for "values[indexVar]" – the fact that may

allow more efficient implementations.

Cardinality Constraints

The Problem interface specifies convenience methods for creating constraints that deal

with cardinalities of the arrays of constrained variables. These constraints count how

often certain values are taken by an array of constrained variables. The “cardinality

variable” is a constrained variable that is equal to the number of those elements in the

array "vars" that are bound to the value "cardValue".

Consider an example when you want to limit capacity of suppliers that defined as an

array of constrained integer variables. The maximal capacities are defined in a regular

array int[] capacities = { 1, 4, 2, 1, 3 }; Here is the proper constraint:

for (int j = 0; j < nbSuppliers; j++) {

p.postCardinality(suppliers, j, "<=", capacities[j]);

 }

The entire problem is described and solved below. Here is the list of Problem’s methods

for posting cardinality constrains:

Methods of the interface Problem Impl.

Level

Constraint postCardinality(Var[] vars, int cardValue, String

oper, int value)

This method creates, posts, and returns a new cardinality constraint such as

“cardinality(vars,cardValue) < value”. Here “cardinality(vars,cardValue)”

denotes a constrained integer variable that is equal to the number of those

elements in the array "vars" that are bound to the "cardValue". For example,

if “oper” is ”<” it means that the variable “cardinality(vars,cardValue)” must

be less than the “value”.

CP

solver

Constraint postCardinality(Var[] vars, int cardValue, String

oper, Var var)

This method is similar to the one above but instead of “value” the

“cardinality(vars,cardValue)” is being constrained by “var”.

CP

solver

JSR-331: Constraint Programming API

32

Constraint postCardinality(Var[] vars, Var cardVar,

String oper, int value)

This method creates, posts, and returns a new cardinality constraint such as

“cardinality(vars,cardVar) < value”. Here “cardinality(vars,cardVar)”

denotes a constrained integer variable that is equal to the number of those

elements in the array "vars" that are equal to "cardVar". For example, if

“oper” is ”<” it means that the variable “cardinality(vars,cardValue)” must

be less than the “value”.

CP

solver

Constraint postCardinality(Var[] vars, Var cardVar,

String oper, Var var)

This method is similar to the one above but instead of “value” the

“cardinality(vars,cardVar)” is being constrained by “var”.

CP

solver

All possible comparison operators have been described above.

These constraints do NOT assume a creation of intermediate “cardinality” variables – the

fact that may allow more efficient implementations.

Global Cardinality Constraints

The Problem interface also specifies convenience methods for creating global cardinality

constraints (known as “GCC”) that represent not one but multiple cardinalities at the

same time. You may see how the GCC constraint being used in the standard example

“GraphColoring”. Here is the list of Problem’s methods that post global cardinality

constraints:

Methods of the interface Problem Impl.

Level

Constraint postGlobalCardinality(Var[] vars, int[] values,

Var[] cardinalityVars)

This method creates and posts a new constraint that states:

“For each index i the number of times the value values[i] occurs in

the array vars is exactly cardinalityVars[i]”

The arrays cardinalityVars and values should have the same size –

otherwise a RuntimeException will be thrown. A newly created constraint

is posted.

Common

or CP

solver

JSR-331: Constraint Programming API

33

Constraint postGlobalCardinality (Var[] vars, int[]

values, int[] cardMin, int[] cardMax)

This method creates and posts a new constraint that states:

“For each index i the number of times the value values[i] occurs in

the array vars should be between cardMin[i] and cardMax[i]

(inclusive)”

The arrays values, cardMin and cardMax should have the same size –

otherwise a RuntimeException will be thrown. A newly created constraint

is posted.

Common

or CP

solver

The common JSR-331 implementation provides the default implementations of both

these constraints using simple decompositions. Concrete implementation may (or may

not) provide their own implementation class GlobalCardinality that supports both

variants of this popular constraint with different consistency levels.

Min/Max Constraints

The Problem interface also specifies convenience methods for creating and posting

constraints for constrained variables that are equal to a minimum and a maximum of

other variables.

Methods of the interface Problem Impl.

Level

Constraint postMin(Var[] vars,String oper,int value)

This method creates and posts a new constraint that states:

“The minimal variable in the array vars should be less that value”

if the oper is “<”. Replace the word “less” for the proper words for all

other comparison operators. A newly created constraint is posted.

Common

Constraint postMin(Var[] vars, String oper, Var var)

This method creates and posts a new constraint that states:

“The minimal variable in the array vars should be less that var”

if the oper is “<”. Replace the word “less” for the proper words for

all other comparison operators. A newly created constraint is

posted.

Common

There are similar constraints postMax defined for maximal variables in the array vars.

 More Constraints

Any JSR-331 compliant CP solver provides its own implementations of major constraints

specified in the standard interface Problem. At the same time as the standard evolves,

JSR-331 implementations may provide other constructors for already defined constraints

and for other constraints they have implemented. The only requirement is that

constraints not included in the standard should still implement the interface

javax.constraints.Constraint. This approach allows a user to take advantage of

JSR-331: Constraint Programming API

34

the implementation-specific features. At the same time a user should be warned that the

use of implementation specific constructors renders the application code dependent on

that particular implementation.

The common JSR-331 implementation javax.constraints.impl.constraint

already provides several additional constraints that do not depend on a particular CP

solver. Among them:

 ConstraintTrue: always successful

 ConstraintFalse: always fails when posted

 ConstraintTraceVar: used by the common Solver to implement methods

trace(..)

 ConstraintMax: provides a constraint for a maximum of an array of constrained

variables

 ConstraintMin: provides a constraint for a minimum of an array of constrained

variables

 ConstraintNotAllEqual: provides a constraint that states that not all

elements inside an array of constrained variables are the same or all equal to the

values from a given array of integers.

More similar constraints will be added to the common JSR-331 implementation as the

standard evolves.

User-Defined Constraints

A user can define problem-specific constraints by combining the existing constraints

using Constraint logical operations “and”, “or”, “negation”, and “implies” defined in

the interface Problem.

JSR-331 users also may create a subclass of the common predefined class

javax.constraints.impl.constraint.AbstractConstraint to define their own

constraints. For example, here is an example of the constraint

ConstraintNotAllEqual that actually defines two constraints:

1) not all elements inside an array of constrained variables are the same

2) not all elements inside an array of constrained variables are equal to the values from

a given array of integers.

//===

// J A V A C O M M U N I T Y P R O C E S S

//

// J S R 3 3 1

//

// Common Implementation

//

//===

package javax.constraints.impl.constraint;

import javax.constraints.Constraint;

import javax.constraints.Oper;

JSR-331: Constraint Programming API

35

import javax.constraints.Var;

import javax.constraints.VarBool;

import javax.constraints.impl.AbstractConstraint;

public class ConstraintNotAllEqual extends AbstractConstraint {

 Constraint constraint;

 public ConstraintNotAllEqual(Var[] vars) {

 super(vars[0].getProblem());

 Problem p = getProblem();

 int n = vars.length-1;

 VarBool[] equalities = new VarBool[n];

 for (int i = 0; i < n; i++) {

 equalities[i] = p.linear(vars[i],”=”,vars[i+1]).asBool();

 }

 constraint = p.linear(equalities, ”<”, n);

 }

 public ConstraintNotAllEqual(Var[] vars, int[] values) {

 super(vars[0].getProblem());

 Problem p = getProblem();

 if (values.length != vars.length)

 throw new RuntimeException(

 "ConstraintNotAllEqual requires arrays of the same length");

 int n = vars.length;

 VarBool[] equalities = new VarBool[n];

 for (int i = 0; i < n; i++)

 equalities[i]=p.linear(vars[i],”=”,values[i+1]).asBool();

 constraint = p.linear(equalities, ”<”, n);

 }

 public void post() {

 constraint.post();

 }

}

Example “SEND + MORE = MONEY”
The following example demonstrates how to represent and solve a simple puzzle using JSR-

331. Assuming that different letters represent different digits you need to solve the following

puzzle:

 S E N D

 + M O R E

 =========

 M O N E Y

 Here is the solution:

import javax.constraints.*;

public class SendMoreMoney {

JSR-331: Constraint Programming API

36

 Problem p = ProblemFactory.newProblem("SENDMORY");

 public void define() { // Problem Definition

 // define variables

 Var S = p.variable("S",1, 9);

 Var E = p.variable("E",0, 9);

 Var N = p.variable("N",0, 9);

 Var D = p.variable("D",0, 9);

 Var M = p.variable("M",1, 9);

 Var O = p.variable("O",0, 9);

 Var R = p.variable("R",0, 9);

 Var Y = p.variable("Y",0, 9);

 // Post "all different" constraint

 Var[] vars = new Var[] { S, E, N, D, M, O, R, Y };

 p.postAllDifferent(vars);

 // Define constraint SEND + MORE = MONEY

 int coef[] = { 1000, 100, 10, 1, 1000, 100, 10, 1,

 -10000, -1000, -100, -10, -1 };

 Var[] sendmoremoney =

 new Var[] { S, E, N, D, M, O, R, E, M, O, N, E, Y};

 p.post(coef, sendmoremoney, "=", 0);

 }

 public void solve() { // Problem Resolution

 Solution s = p.getSolver().findSolution();

 if (s == null)

 p.log("No Solutions");

 else

 s.log();

 }

 public static void main(String[] args) {

 SendMoreMoney sm = new SendMoreMoney();

 sm.define();

 sm.solve();

 }

}

Solution #1: S[9] E[5] N[6] D[7] M[1] O[0] R[8] Y[2]

PROBLEM RESOLUTION CONCEPTS
To represent the Problem Resolution part of any CSP, the JSR-331 uses the interface

"Solver". The solver allows a user to solve the problem by finding feasible or optimal

Solutions. Here is an example of a simple problem resolution:

JSR-331: Constraint Programming API

37

 p.log("=== Find One solution:");

 Solver solver = p.getSolver();

 Solution solution = solver.findSolution();

 if (solution != null)

 solution.log();

 else

 p.log("No Solutions");

In this simple case, the default solver (defined as an instance of the class

javax.constraints.Solver) is trying to find one solution using the default search

strategy that enumerates all variables previously added to the problem. The JSR-331

explicitly defines the interface “SearchStrategy” that can be adjusted by a user and

used by the solver to find solutions of the problem.

Interface “Solver”
The JSR-331 provides interface “java.constraints.Solver” (and its common

implementation “java.constraints.impl.search.AbstractSolver”) that specifies

different problem resolution concepts and methods. It is possible to create multiple

solvers for the same problem. These solvers may produce different solutions pursuing

different objectives. During the execution of Solver’s methods the state of the Problem

can be changed. The interface Solver provides the following enum to control a problem’

state after the solver execution:

public enum ProblemState {

 RESTORE,

 DO_NOT_RESTORE

}

Another enum “Objective” provided by the interface Solver is

public enum Objective {

 MINIMIZE,

 MAXIMIZE

}

It allows a user to specify the optimization objective within the method

“findOptimalSolution”.

Below is the list of the major methods from the interface Solver:

Method of the interface Solver Impl.

Level

JSR-331: Constraint Programming API

38

public Solution findSolution();

This method attempts to find a solution of the problem, for which the

solver was defined. It uses the default search strategy or the strategy

defined by the latest method setSearchStrategy(). It returns the found

solution (if any) or null. If a solution is found, all decision variables will

remain instantiated with the solution values after the execution of this

method. If a solution was not found, the problem state will be restored.

Common

public Solution findSolution(ProblemState restoreOrNot);

This method attempts to find a feasible solution of the problem, for which

the solver was defined. It uses the default search strategy or the strategy

defined by the latest method setSearchStrategy (). It returns the found

solution (if any) or null.

If a solution is not found, the problem state is restored. If a solution is

found, the problem state will be restored only if the parameter

"restoreOrNot" is RESTORE. If the parameter "restoreOrNot" is

DO_NOT_RESTORE, after a solution is found all decision variables will be

instantiated with the solution values.

CP

solver

public Solution findOptimalSolution(Objective objective,

Var objectiveVar);

This method attempts to find the solution that minimizes/maximizes the

objective variable “objectiveVar”. The first parameter could have one of two

values: Objective.MINIMIZE or Objective.MAXIMIZE.

To find solutions this method uses the default search strategy or the

strategy defined by the latest method setSearchStrategy(). The

optimization process can be controlled by:

- OptimizationTolerance that is a difference between solution objectives

during two consecutive process iterations - see the method

setOptimizationTolerance()

- MaxNumberOfSolutions that is the total number of considered solutions -

may be limited by the method setMaxNumberOfSolutions()

- TimeLimit that is the total number of milliseconds allocated for the entire

optimization process as it can be set by the method setTimeLimit().

The problem state after the execution of this method is always restored.

The produced optimal solution (if any) will contain found values for all

variables that were added to the problem (including the objectiveVar).

Common

or CP

solver

public Solution findOptimalSolution(Var objectiveVar);

This method is an equivalent of

findOptimalSolution(Objective.MINIMIZE,objectiveVar)

Common

JSR-331: Constraint Programming API

39

public Solution[] findAllSolutions();

This method attempts to find all solutions for the Problem. It uses the

default search strategy or the strategy defined by the latest method

setSearchStrategy(). It returns an array of found solutions or null if there

are no solutions. A user has to be careful not to overload the available

memory because the number of found solutions could be huge. The process

of finding all solutions can be also controlled by:

- OptimizationTolerance that is a difference between solution objectives

during two consecutive process iterations - see the method

setOptimizationTolerance()

- MaxNumberOfSolutions that is the total number of considered solutions -

may be limited by the method setMaxNumberOfSolutions()

- TimeLimit that is the total number of milliseconds allocated for the entire

optimization process as it can be set by the method setTimeLimit().

The common implementation is based on the SolutionIterator (see below).

Common

or CP

solver

public SolutionIterator solutionIterator();

This method creates and returns a solution iterator that allows a user to

find and navigate through multiple solutions (if any) using the current

search strategy.

Common

or CP

solver

public void setSearchStrategy(SearchStrategy strategy);

This method sets a search strategy defined as a parameter as a new

default search strategy to be used by methods findSolution(),

findOptimalSolution(..), findAllSolutions(..), and by solution iterators. At

least one search strategy should be defined by every implementation as the

default search strategy.

Common

public SearchStrategy getSearchStrategy();

This method returns the current search strategy that was set by an

implementation as the default search strategy or by the latest call of the

method setSearchStrategy(). A user may adjust the search strategy by

changing its default decision variables, its variable selector, and/or its

value selector. Search strategy are used by methods findSolution(),

findOptimalSolution(..), findAllSolutions(..), and by solution iterators.

Common

public SearchStrategy newSearchStrategy();

This method returns a new instance of the search strategy that is set by an

implementation as the default search strategy. A user may adjust this

search strategy by changing its default decision variables, its variable

selector, and/or its value selector. This new strategy may be added to the

strategy execution list using the Solver’s method “addStrategy”

CP

solver

public void addSearchStrategy(SearchStrategy strategy);

This method adds the strategy to the end of the strategy execution list.
CP

solver

public void addStrategyLogVariables();

This method adds the strategy that logs all constrained integer variables.
Common

JSR-331: Constraint Programming API

40

public void setMaxNumberOfSolutions(int number);

This method sets a limit for a number of solutions that can be found by the

method “findAllSolutions” or can be considered during execution of the

method “findOptimalSolution”. The default value is -1 that means

there are no limits for a number of considered solutions.

Common

public int getMaxNumberOfSolutions();

This method returns a number that was set by the method

setMaxNumberOfSolutions(…)

Common

public void setOptimizationTolerance(int tolerance);

This method specifies a tolerance for the method

“findOptimalSolution”. If the difference between newly found solution

and a previous one is less or equal to the "tolerance" then the last solution

is considered to be the optimal one. By default, the optimization tolerance

is 0.

Common

public int getOptimizationTolerance();

This method returns a tolerance that was set by the method

setOptimizationTolerance(…)

Common

public void setTimeLimit(int milliseconds);

This method specifies a time limit in milliseconds for the total execution of

different find-methods. By default, there is no time limit.

Common

public int getTimeLimit();

This method returns a time limit in milliseconds for the total execution of

different find-methods. By default, it returns -1 that means there is no

time limit.

Common

public void logStats();

This method logs the solver execution statistics such as a number of choice

points, number of failures, used memory, etc. This method is expected to

be specific for different implementations. By default only time information

will be logged out.

Common

or CP

solver

optional

The Solver interface also defines several other convenience methods such as tracing

methods:

- trace(Var var)

- trace(Var[] vars)

- traceFailures(boolean yesno)

- traceExecution(boolean yesno).

JSR-331: Constraint Programming API

41

Example of Constraint Relaxation Problem
The following example demonstrates how to deal with real-world situations when some

constraints should be relaxed to make the problem solvable. It also demonstrates how to

find an optimal solution of the problem that in this case is a solution that minimizes the

total constraint violation.

Consider a map coloring problem that involves choosing colors for the countries on a map

in a such way that no two neighboring countries have the same colors. When there are

not enough colors some of these constraints have to be violated based of their relative

importance. Below is a solution of this problem as it is presented in the JSR-331 TCK.

package org.jcp.jsr331.samples;

import javax.constraints.*;

public class MapColoringWithViolations {

 Problem p = ProblemFactory.newProblem("MapColoring");

 static final String[] colors = { "red", "green", "blue" };

 public MapColoringWithViolations() {

 try {

 // Variables

 int n = colors.length-1;

 Var Belgium = p.variable("Belgium",0, n);

 Var Denmark = p.variable("Denmark",0, n);

 Var France = p.variable("France",0, n);

 Var Germany = p.variable("Germany",0, n);

 Var Netherlands = p.variable("Netherland",0, n);

 Var Luxemburg = p.variable("Luxemburg",0, n);

 Var[] vars =

 {Belgium,Denmark,France,Germany,Netherlands,Luxemburg};

 // Hard Constraints

 p.post(France, "!=",Belgium);

 p.post(France, "!=",Germany);

 p.post(Belgium,"!=",Netherlands);

 p.post(Belgium,"!=",Germany);

 p.post(Germany,"!=",Netherlands);

 p.post(Germany,"!=",Denmark);

 // Soft Constraints

 Var[] weightVars = {

 p.linear(France, "=",Luxemburg).asBool().multiply(257),

 p.linear(Luxemburg,"=",Germany).asBool().multiply(9043),

 p.linear(Luxemburg,"=",Belgium).asBool().multiply(568)

 };

 // Optimization objective

 Var weightedSum = p.sum(weightVars);

weightedSum.setName("Total Constraint Violations");

 Solution solution =

 p.getSolver().findOptimalSolution(weightedSum);

 if (solution != null) {

 solution.log();

JSR-331: Constraint Programming API

42

 for (int i = 0; i < vars.length; i++) {

 String name = vars[i].getName();

 p.log(name+" - "+colors[solution.getValue(name)]);

 }

 }

 else

 p.log("no solution found");

 } catch (Exception ex)

 ex.printStackTrace();

 }

}

This problem may produce the results that may look like below;

Solution #1:

Belgium[0] Denmark[0] France[1] Germany[2] Netherland[1]

Luxemburg[1] Total Constraint Violations[257]

Belgium - red

Denmark - red

France - green

Germany - blue

Netherland - green

Luxemburg - green

Interface “SearchStrategy”
The JSR-331 utilizes the concept “SearchStrategy” to allow a user to choose between

different search algorithms provided by different implementations. Search strategies are

used by those Solver’s methods that find a solution, find all solutions, find an optimal

solution, and by solution iterators. A search strategy should know all decision variables

it will try to instantiate during the search, and may need external selectors for variables

and values. At least one decision strategy should be provided by any implementation to

serve as the default strategy created in the implementation specific Solver constructor.

The common interface “SearchStrategy” defines the following methods:

Methods of the interface “SearchStrategy”
Impl.

Level

public void setName(String name)

public String getName()

Define a setter and a getter for the name of this strategy

Common

public Solver getSolver()

Returns a solver with which this strategy is associated.

Common

public void setType(SearchStrategyType type)

Sets a type for this strategy. The specification currently defined two type:

SearchStrategyType.DEFAULT and SearchStrategyType.CUSTOM

Common

public Var[] getVars();

This method returns an array of integer variables that are used by the

Common

http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#getName()
http://4c110.ucc.ie/cpstandards/javadoc/javax/constraints/ConstrainedVariable.html#setName(java.lang.String)

JSR-331: Constraint Programming API

43

strategy.
public void setVars(Var[] vars);

This method sets an array of integer variables that will be used by the

strategy.

Common

public void setVarSelector(VarSelector selector);

This method sets a variable selector that will be used by the strategy

during the search.

Common

public void setVarSelectorType(VarSelectorType type);

This method sets a variable selector of the standard type specified as a

parameter.

Common

public void setValueSelector(ValueSelector selector);

This method sets a value selector that will be used by the strategy during

the search.

Common

public void setValueSelectorType(ValueSelectorType type);

This method sets a value selector of the standard type specified as a

parameter.

Common

public VarReal[] getVarReals();

This method returns an array of real variables that are used by the

strategy.

Common

public void setVarReals(VarReal[] vars);

This method sets an array of real variables that will be used by the

strategy.

Common

public VarSet[] getVarSets();

This method returns an array of set variables that are used by the

strategy.

Common

public void setVarSets(VarSet[] vars);

This method sets an array of set variables that will be used by the

strategy.

Common

public void trace();

This method forces the strategy to trace itself during the execution.

CP

solver

All implementation specific search strategies should be implemented as subclasses of the

common base class “javax.constraints.impl.search.AbstractSeachStrategy”.

The only requirement to all search strategies is the following: when they are invoked by

an implementation specific Solver method findSolution(ProblemState state) they

are expected to either produce a solution of the problem within the current time limit or

to report that a solution cannot be found. How they do it and how the internal

interaction between Solver method “findSolution” and its search strategy is organized

remains a prerogative of a concrete JSR-331 implementation.

Strategy Execution List
The search strategy execution list allows a user to mix strategies for different types of

decision variables and to control their execution order. For example, for scheduling and

resource allocation problems a user may decide first to schedule all activities and then

assign resources to already scheduled activities. But a user may also decide first to

assign resources and only then to schedule activities based on resource availability.

JSR-331: Constraint Programming API

44

The Solver method

SearchStrategy getSearchStrategy()

returns the first search strategy specific for this particular JSR-331 implementation. A

user may specify decision variables and set different variable selectors and value

selectors for the default strategy. The Solver method

SearchStrategy newSearchStrategy()

returns a new instance of the default search strategy specific for this particular JSR-331

implementation. A user may specify decision variables and selectors for this strategy

and then add it to the end of the “search strategy execution list”. The Solver executes all

strategies from this list in the order they were added, and the execution succeeds only

when all strategies from the list are successfully executed.

Let’s assume that a user has two arrays of decision variables “types” and “counts” and

wants Solver first instantiate all types and only then all counts (possibly using different

selectors). Here is how it can be done:

Solver solver = problem.getSolver();

SearchStrategy typeStrategy = solver.getSearchStrategy();

 typeStrategy.setVars(types);

SearchStrategy countStrategy = solver.newSearchStrategy();

countStrategy.setVars(counts);

countStrategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN);

solver.addSearchStrategy(countStrategy);

 solution = solver.findSolution();

There are several convenience methods that allow a user to add additional strategies to

the execution list without explicitly creating new search strategies. The method

“addSearchStrategy” also supports different combinations of parameters Var[],

VarSelector, and ValueSelector. The above code may be written more compactly as:

Solver solver = problem.getSolver();

 solver.getSearchStrategy().setVars(types);

 solver.addSearchStrategy(counts, VarSelectorType.MIN_DOMAIN);

 solution = solver.findSolution();

Adding Non-Search Strategies
The JSR-331 allows a user to add non-search strategies to the search strategy execution

list. The common JSR-331 implementation provides an example of such non-search

strategy called StrategyLogVariables. A user may use this strategy to display a state

of problem variables after different search iterations like in this example:

Solver solver = p.getSolver();

solver.addStrategyLogVariables();

Solution solution =

 solver.findOptimalSolution(Objective.MAXIMIZE, p.getVar("cost"));

if (solution != null)

 solution.log();

else

 p.log("No Solutions");

JSR-331: Constraint Programming API

45

In this case every time when the default search strategy finds a solution the

StrategyLogVariables will show the state of all problem variables until an optimal

solution will be found. Here is the implementation code from the file

StrategyLogVariables.java:

package javax.constraints.impl.search;

import javax.constraints.Solver;

import javax.constraints.Var;

public class StrategyLogVariables extends AbstractSearchStrategy {

 Var[] vars;

 public StrategyLogVariables(Var[] vars) {

 super(vars[0].getProblem().getSolver());

 this.vars = vars;

 setType(SearchStrategyType.CUSTOM);

 }

 public StrategyLogVariables(Solver solver) {

 super(solver);

 vars = getProblem().getVars();

 setType(SearchStrategyType.CUSTOM);

 }

 public boolean run() {

 getProblem().log("=== StrategyLogVariables:");

 getProblem().log(vars);

 return true;

 }

}

A user may write in a similar way his/her own non-search strategy for displaying or

saving intermediate search results including application specific objects. It is important

to define a strategy type as SearchStrategyType.CUSTOM .

Variable Selectors
The JSR-331 specifies a set of standard variable selectors that can be used by an end

user to customize the standard search strategy. These variable selectors are defined by

the standard interface “VariableSelector” using the following enum:

static public enum VarSelectorType {

 /**

 * selection of variables in order of definition

 */

 INPUT_ORDER,

 /**

 * smallest lower bound

 */

 MIN_VALUE,

 /**

 * largest upper bound

JSR-331: Constraint Programming API

46

 */

 MAX_VALUE,

 /**

 * min size of domain, tie break undefined

 */

 MIN_DOMAIN,

 /**

 * min size of domain, smallest lower bound tie break

 */

 MIN_DOMAIN_MIN_VALUE,

 /**

 * min size of domain, random tie break

 */

 MIN_DOMAIN_RANDOM,

 /**

 * random selection of variables

 */

 RANDOM,

 /**

 * min size of domain as first criteria, tie break by degree

 * that is the number of attached constraints

 */

 MIN_DOMAIN_MAX_DEGREE,

 /**

 * min value of fraction of domain size and degree

 */

 MIN_DOMAIN_OVER_DEGREE,

 /**

 * min value of domain size over weighted degree

 */

 MIN_DOMAIN_OVER_WEIGHTED_DEGREE,

 /**

 * largest number of recorded failures in attached constraints

 */

 MAX_WEIGHTED_DEGREE,

 /**

 * largest impact, select variable which when assigned restricts

 * the domains of all other variables by the largest amount

 */

 MAX_IMPACT,

 /**

 * largest number of attached constraints

 */

 MAX_DEGREE,

 /**

 * largest difference between smallest

JSR-331: Constraint Programming API

47

 * and second smallest value in domain

 */

 MAX_REGRET,

 /**

 * custom variable selector

 */

 CUSTOM

}

Not all these selectors have to be implemented by every JSR-331 implementation. Most

of variable selectors have been already included in the common implementation in the

package “javax.constraints.impl.search.selectors”. However, the variable

selectors MIN_DOMAIN_OVER_WEIGHTED_DEGREE, and MAX_WEIGHTED_DEGREE are

optional and may be implemented by a particular implementation only.

To set a new variable selector such as MIN_DOMAIN, a user may write:

SearchStrategy strategy = solver.setSearchStrategy();

strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN);

A user can easily implement her own variable selector as a subclass of the standard class

“javax.constraints.impl.search.selectors.VarSelectorI” by overloading only

this abstract method:

/**

* Returns the index of the selected variable in the array

* of constrained variables passed to the selector as a

* constructor’ parameter.

* If no variables to select, it returns -1;

*/

abstract public int select();

Such custom selector can take into consideration the business objects potentially

attached to every constrained variable.

Similar selectors for other types of constrained variables will be added later on.

Value Selectors
The JSR-331 specifies a set of standard value selectors that can be used by an end user to

customize the standard search strategy. These value selectors are defined by the

standard interface “ValueSelector” using the following enum:

static public enum ValueSelectorType {

 /**

 * try values in increasing order one at a time

 * without removing failed values on backtracking

 */

 IN_DOMAIN,

 /**

 * try values in increasing order, remove value on backtracking

JSR-331: Constraint Programming API

48

 */

 MIN,

 /**

 * try values in decreasing order, remove value on backtracking

 */

 MAX,

 /**

 * try to alternate minimal and maximal values

 */

 MIN_MAX_ALTERNATE,

 /**

 * try values in the middle of domain,

 * the closest to (min+max)/2

 */

 MIDDLE,

 /**

 * try the median values first,

 * e.g if domain has 5 values, try the third value first

 */

 MEDIAN,

 /**

 * try a random value

 */

 RANDOM,

 /**

 * try a value which causes the smallest domain reduction

 * in all other variables

 */

 MIN_IMPACT,

 /**

 * custom value selector

 */

 CUSTOM

}

Not all these selectors have to be implemented by every JSR-331 implementation. Most

of the value selectors are already included in the common implementation in the package

“javax.constraints.impl.search.selectors”. However, the value selectors

IN_DOMAIN and MIN_IMPACT are optional and may be implemented by a particular

implementation only.

To set a new variable selector such as MEDIAN, a user may write:

SearchStrategy strategy = solver.getSearchStrategy();

strategy.setValueSelectorType(ValueSelectorType.MEDIAN);

JSR-331: Constraint Programming API

49

A user can easily create her own value selector by implementing the standard interface

“javax.constraints.ValueSelector” with only two methods:

/**

 * Returns a value from the domain of constrained variable “var”

 */

public int select(Var var);

/**

 * Returns a type of this value selector

 */

public ValueSelectorType getType() {

 return ValueSelectorType.CUSTOM;

}

Such custom selectors can take into consideration the business objects potentially

attached to every constrained variable.

Similar selectors for other types of constrained variables will be added later on.

More Search Strategies

At this stage of the JSR-331 development, the only way for a user to utilize search

strategies different from the default one is to become implementation dependent. For

example, if an implementation provide a BoundBacktrackingSearchStrategy as a

subclass of “javax.constraints.impl.search.AbstractSeachStrategy”, then to

use this strategy a user may write:

SearchStrategy strategy =

 new BoundBacktrackingSearchStrategy(100); // steps

solver.setSearchStrategy(strategy);

Interface “Solution”
The standard interface “Solution” specifies solutions can be generated by such Solver’

methods as “findSolution”, “findOptimalSolution”, and by solution iterators. This

interface is completely implemented on the common level in the class

“javax.constraints.impl.search.BasicSolution” but any JSR-331

implementation may extend it with its own subclass

“javax.constraints.impl.search.Solution”.

A solution instance contains copies of all decision variables that were used by a search

strategy that created this solution. These copies are in the state, in which original

variable would be left after the solution search is completed but before a possible state

restoration. There are no requirements that all decision variables should be instantiated

– it depends on the used search strategy.

Here are main Solution’s methods:

JSR-331: Constraint Programming API

50

Method of the interface Solution
Impl.

Level

public Var[] getVars();

This method returns an array of variables with the same names as all

variables that were added to the problem. These variables keep a current

state of the initial variables when the solution was found.

Common

public Var getVar(String name);

This method returns the variable with the name “name” saved within this

solution. It throws a runtime exception if the proper variable does not

exist. It is a copy of the actual problem’s variable with the name “name”

but it is in the state in which original variable would be left after the

solution search is completed before a possible state restoration.

Common

public int getValue(String name);

This method returns the found value of the variable with the name “name”

saved within this solution. It throws a runtime exception if the proper

variable does not exist or was not instantiated during the solution search.

Common

public boolean isBound();

This method returns true only if all solution variables are instantiated

(bound).

Common

public boolean isBound(String name);

This method returns true only if a solution’ variable with the given name is

bound.

Common

public int getSolutionNumber();

This method returns a number associated with this solution. Solution

numbers start with 1.

Common

public void setSolutionNumber(int number);

This method sets a solution number. This method is to be used by a

solution strategy that creates this solution.

Common

public void log();

This method logs all Solution’s variables to the Problem’s log. These

variables have shown in the state as there were when the solution was

found (some variables could remain non-instantiated).

Common

public Solver getSolver();

This method returns a solver which generated this solution.

Common

There are similar methods for other types of variables.

JSR-331: Constraint Programming API

51

Solution Iterator
The standard interface SolutionIterator allows a user to find and iterate through

multiple solutions and execute different application specific actions with each found

solution. The intended use of a solution iterator is presented by the following code:

 SolutionIterator iter = solver.solutionIterator();

 while(iter.hasNext()) {

Solution solution = iter.next();

...

 }

For example, a solution iterator may be uses to provide a very simple implementation of

the Solver’s method “findAllSolutions”:

public Solution[] findAllSolutions() {

 SolutionIterator iter = solutionIterator();

 ArrayList<Solution> solutions = new ArrayList<Solution>();

 while(iter.hasNext()) {

 Solution solution = iter.next();

 solutions.add(solution);

 }

 Solution[] array = new Solution[solutions.size()];

 for (int i = 0; i < array.length; i++) {

 array[i] = solutions.get(i);

 }

 return array;

}

The common implementation also takes into consideration the current limits for a

maximal number of solutions and for the total available time. This code provides an

example of how a user may navigate through different solutions. A user may add its own

code to decide which solutions to save and when to stop the search.

In a similar way, we a user may implement its own search for an optimal solution:

public Solution findOptimalSolution(Var objectiveVar) {

SolutionIterator iter = solutionIterator();

int bestValue = Integer.MAX_VALUE;

Solution solution = null;

while(iter.hasNext()) {

 solution = iter.next();

 try {

 int newValue = solution.getValue(objectiveVar.getName());

 if (bestValue > newValue)

 bestValue = newValue;

 getProblem().post(obj,”<”,newValue); // may fail

 } catch (Exception e) {

 break;

 }

}

objectiveVar.setName(oldName);

return solution;

}

The common implementation of this method in the package
“javax.constraints.impl.search.AbstractSolver” also takes into consideration

JSR-331: Constraint Programming API

52

the current limits for a maximal number of solutions and for the total available time.

The Objective.MAXIMIZE can be replaced by Objective.MINIMIZE for the

objectiveVar that is opposite to the original objective.

These implementations are given only as examples for end users who may organize their

own solution iteration cycles. For example, a user may decide to find 3 best solutions

within 10 seconds. It becomes a matter of setting the proper filters inside the above main

loop right after iter.next(). A user may also utilize business objects associated with

decision variables to compare different solutions.

Note that the described implementations can be used with any search strategy.

Below is in a very simplified (and inefficient but working) implementation of the

interface SolutionIterator:

public class BasicSolutionIterator implements SolutionIterator {

 Solver solver;

 Solution solution;

 int solutionNumber;

 boolean noSolutions;

 public BasicSolutionIterator(Solver solver) {

 this.solver = solver;

 solution = null;

 noSolutions = false;

 solutionNumber = 0;

 }

 public boolean hasNext() {

 if (noSolutions)

 return false;

 solution = solver.findSolution(ProblemState.RESTORE);

 if (solution == null)

 return false;

 else

 return true;

 }

 public Solution next() {

 solution.setSolutionNumber(++solutionNumber);

 Var[] vars = solver.getSearchStrategy().getVars();

 int[] values = new int[vars.length];

 for (int i = 0; i < values.length; i++) {

 values[i] = solution.getValue(vars[i].getName());

 }

 try {

 new ConstraintNotAllEqual(vars, values).post();

 } catch (Exception e) {

 noSolutions = true;

 }

 return solution;

 }

}

Thus, any JSR-331 implementation may reuse common implementations or overload

these methods for a better performance. However, if a JSR-331 implementation provides

at least one search strategy, all other problem resolution methods can be taken from the

JSR-331: Constraint Programming API

53

common implementation.

MORE IMPLEMENTATION EXAMPLES
The following examples demonstrate how to apply the described Problem and Solver

methods to:

- find one solution, all solutions, and an optimal solution of a simple arithmetic

problem

- apply an efficient search strategy to solve the notorious Queens problem.

These problems are included in the standard JSR-331 installation.

Simple Arithmetic Problem
This problem shares the same problem definition for different problem resolution cases.

package org.jcp.jsr331.tests;

import javax.constraints.*;

import junit.framework.*;

import junit.textui.TestRunner;

public class TestSolutions extends TestCase {

 public static void main(String[] args) {

 TestRunner.run(new TestSuite(TestSolutions.class));

 }

 public Problem defineCsp() {

 Problem problem = ProblemFactory.newProblem("Test");

 //======= Define variables

 Var x = problem.variable("X", 0, 10);

 Var y = problem.variable("Y", 0, 10);

 Var z = problem.variable("Z", 0, 10);

 //======= Define constraints

problem.post(x,"<",y);

problem.post(y,">",5);

problem.post(x.plus(y),"=",z);

// Cost = 3XY - 4Z

 Var cost = x.multiply(y).multiply(3).minus(z.multiply(4));

cost.setName("Cost");

problem.post(cost,">=",2);

problem.post(cost,"<=",25);

return problem;

 }

 public void testOneSolution() {

 Problem problem = defineCsp();

 problem.log("=== One solution:");

 Solver solver = problem.getSolver();

 Solution solution = solver.findSolution();

 if (solution == null)

 problem.log("No Solutions");

 else

 solution.log();

 problem.log("After Search",problem.getVars());

 assertTrue(solution.getValue("X") == 2);

 assertTrue(solution.getValue("Y") == 6);

JSR-331: Constraint Programming API

54

 assertTrue(solution.getValue("Z") == 8);

 assertTrue("testOneSolution: Invalid Cost",

 solution.getValue("Cost") == 4);

 }

 public void testAllSolutions() {

 Problem problem = defineCsp();

 problem.log("=== All solutions:");

 Solver solver = problem.getSolver();

 solver.setMaxNumberOfSolutions(4);

 Solution[] solutions = solver.findAllSolutions();

 for(Solution sol : solutions) {

 sol.log();

 }

 assertTrue(solutions.length == 4);

 }

 public void testSolutionIterator() {

 Problem problem = defineCsp();

 problem.log("=== Solution Iterator:");

 Solver solver = problem.getSolver();

 SolutionIterator iter = solver.solutionIterator();

 int n = 0;

 while(iter.hasNext()) {

 Solution solution = iter.next();

 solution.log();

 n++;

 }

 assertTrue(n == 5);

 }

 public void testOptimalSolution() {

 Problem problem = defineCsp();

 problem.log("=== Optimal Solution:");

 Solver solver = problem.getSolver();

 Var costVar = problem.getVar("Cost");

 Solution solution =

 solver.findOptimalSolution(Objective.MAXIMIZE, costVar);

 if (solution == null)

 problem.log("No Solutions");

 else

 solution.log();

 problem.log("Cost=" + solution.getValue("Cost"));

 assertTrue(solution.getValue("Cost") == 23);

 }

}

Queens Problem
The eight-queens problem is a well-known problem that involves placing eight queens on

a chess board in such a way that none of them can capture any other using the

conventional moves allowed to a queen.

package org.jcp.jsr331.samples;

import javax.constraints.*;

public class Queens {

JSR-331: Constraint Programming API

55

 Problem p = ProblemFactory.newProblem("Queens");

 int size;

 Var[] x;

 public Queens(int size) {

 this.size = size;

 }

 public void define() {

 p.log("Queens " + size + ". ");

 // create 3 arrays of variables

 x = p.variableArray("x",0, size-1, size);

 Var[] x1 = new Var[size];

 Var[] x2 = new Var[size];

 for (int i = 0; i < size; i++) {

 x1[i] = x[i].plus(i);

 x2[i] = x[i].minus(i);

 }

 // post "all different" constraints

 p.postAllDifferent(x);

 p.postAllDifferent(x1);

 p.postAllDifferent(x2);

 }

 public void solve() {

 //========= Problem Resolution ==================

 // Find a solution

 Solver solver = p.getSolver();

 solver.setTimeLimit(600000); // milliseconds

 SearchStrategy strategy = solver.getSearchStrategy();

 strategy.setVars(x);

 strategy.setVarSelectorType(VarSelectorType.MIN_DOMAIN_MIN_VALUE);

 strategy.setValueSelectorType(ValueSelectorType.MIN);

 Solution solution = solver.findSolution();

 if(solution == null)

 p.log("no solutions found");

 else{

 solution.log();

 }

 solver.logStats();

 }

 public static void main(String[] args) {

 String arg = (args.length == 0) ? "1000" : args[0];

 int n = Integer.parseInt(arg);

 Queens q = new Queens(n);

 q.define();

 q.solve();

 }

}

A JSR-331 test implementation produced the following results:

Queens 1000

Solution #1: x-0[0] x-1[555] x-2[1] x-3[502] x-4[2] x-5[507] …

*** Execution Profile ***

Number of Choice Points: 996

Number of Failures: 8

Execution time: 1093 msec

JSR-331: Constraint Programming API

56

Warehouse Construction Problem
This problem was specified in ILOG® Solver User Guide. Let's assume that a company

plans to create a network of warehouses to supply its existing stores. Let's suppose in

addition that the company already has a number of suitable sites for building

warehouses and thus wants to know whether or not to create a warehouse on each such

site. For each site chosen, the company wants to determine the optimal capacity for the

warehouse. The company considers the average merchandise turnover as identical from

one store to another. However, the distance among locations and the transportation

infrastructure both lead to varying transportation costs for each pair consisting of a store

and a warehouse. The objective is to minimize total cost by determining for each

warehouse which stores should be supplied by it and what its capacity should be. The

total is then the sum of supply costs plus the costs of building each warehouse.

import javax.constraints.*;

public class Warehouse {

Problem p = ProblemFactory.newProblem("Test");

Var[] suppliers;

Var[] open;

Var[] costs;

Var totalCost;

public Warehouse(int nbStores, int nbSuppliers, int buildingCost,

 int[] capacities, int[][] costMatrix) {

 suppliers = new Var[nbStores];

 open = new Var[nbSuppliers];

 try {

suppliers = p.variableArray("supplier",0, nbSuppliers - 1, nbStores);

costs = new Var[nbStores];

open = p.variableArray("open",0, 1, nbSuppliers);

int maxCost = 0;

int maxSumCost = 0;

for (int i = 0; i < nbStores; i++) {

 for (int j = 0; j < costMatrix[i].length; j++) {

if (maxCost < costMatrix[i][j])

 maxCost = costMatrix[i][j];

}

costs[i] = p.variable("cost-"+i,0,maxCost);

p.postElement(costMatrix[i], suppliers[i], "=", costs[i]);

p.postElement(open, suppliers[i], "=", 1);

maxSumCost += maxCost;

}

// cardinality constraint

for (int j = 0; j < nbSuppliers; j++) {

p.postCardinality(suppliers, j, "<=", capacities[j]);

}

// totalCost= sum(cost) + sum(open)*buildCost

Var sumCost = p.variable("sumCost",0, maxSumCost);

p.post(costs,"=",sumCost);

Var sumOpen = variable("sumOpen", 0, nbSuppliers);

p.post(open, "=", sumOpen).post();

totalCost = sumOpen.multiply(buildingCost).plus(sumCost);

totalCost.setName("TotalCost");

p.add(totalCost);

 }

catch (Exception e) {

p.log("Error in prolem definition: " + e);

JSR-331: Constraint Programming API

57

throw new RuntimeException("Cannot create a problem");

 }

}

public Solution findSolution() {

 Solver solver = p.getSolver();

 Var[] vars = new Var[suppliers.length+open.length];

 int v = 0;

 for (int i = 0; i < suppliers.length; i++) {

vars[v++] = suppliers[i];

 }

 for (int i = 0; i < open.length; i++) {

vars[v++] = open[i];

 }

 solver.getSearchStrategy().setVars(vars);

 Solution solution = solver.findOptimalSolution(totalCost);

 return solution;

}

public void printSolution(Solution solution) {

 if (solution == null) {

 p.log("No Solutions");

 return;

 }

 solution.log();

}

public static void main(String[] args) {

 long startMS = System.currentTimeMillis();

 // ========= Problem Definition ==================

 int nbStores = 10;

 int nbSuppliers = 5;

 int buildingCost = 30;

 int[] capacities = { 1, 4, 2, 1, 3 };

 int[][] costMatrix = new int[][] {

 { 20, 24, 11, 25, 30 },

 { 28, 27, 82, 83, 74 }, { 74, 97, 71, 96, 70 },

 { 2, 55, 73, 69, 61 }, { 46, 96, 59, 83, 4 },

 { 42, 22, 29, 67, 59 }, { 1, 5, 73, 59, 56 },

 { 10, 73, 13, 43, 96 }, { 93, 35, 63, 85, 46 },

 { 47, 65, 55, 71, 95 } };

 Warehouse wh = new Warehouse(nbStores, nbSuppliers, buildingCost,

 capacities, costMatrix);

 // ========= Problem Resolution ==================

 Solution solution = wh.findSolution();

 wh.printSolution(solution);

 long finishMS = System.currentTimeMillis();

 System.out.println("Runtime: " + (finishMS - startMS) + " Millis");

}

}

A JSR-331 test implementation produced the following results:

Solution #24:

supplier-0[4] supplier-1[1] supplier-2[4] supplier-3[0] supplier-4[4]

supplier-5[1] supplier-6[1] supplier-7[2] supplier-8[1]

supplier-9[2] open-0[1] open-1[1] open-2[1] open-3[0] open-4[1]

TotalCost[383]

Runtime: 1553 Millis

JSR-331: Constraint Programming API

58

