Using Constraint Programming
IN Business Rules Environments

Jacob Feldman, PhD
OpenRules Inc., CTO
jacobfeldman@openrules.com
www.openrules.com
www.4c.ucc.ie

% “Shock Troops” for Decision Support

“I have concluded that decision making and the
techniques and technologies to support and automate
it will be the next competitive battleground for
organizations. Those who are using business rules,
data mining, analytics and optimization today are the
shock troops of this next wave of business innovation”

Tom Davenport

Copyright © 2008 OpenRules, Inc.

Introduction

N\ Constraint Programming (CP) is a very powerful problem solving
paradigm with strong roots in Operation Research and Al:

/# Handbook of Constraint Programming (Elsevier, 2006)
/# Association for CP - http://slash.math.unipd.it/acp/

Cork Constraint Computation Centre - http://www.4c.ucc.ie/

N\ This presentation concentrates on pragmatic aspects of CP:

Use of CP for real-world business application development
Available tools and techniques

Simple demo and practical examples

Comparison with BR (pros and cons)

NN

BR+CP Integration - how different CP solvers can be incorporated
into different BR products

Copyright © 2008 OpenRules, Inc.

New buzzword “Business Optimization”

N\ Optimization usually refers to a mathematical technique used to
calculate the best possible (optimal) resource utilization to
achieve a desired result such as:

/ minimizing expenses or travel time
./ maximizing ROI, service level,
/ other optimization objective
N\ Business Optimization helps business people to find optimal

solutions among multiple alternatives subject to different
business constraints.

N\ Optimization is at work everywhere: manufacturing,
transportation, logistics, financial services, utilities, energy,
telecommunications, government, defense, health care and retail

Copyright © 2008 OpenRules, Inc.

% Optimization is back

N\ Nowadays Optimization technology is quickly coming back to the business
application development world as an important component of the EDM -
Enterprise Decision Management

N\ Both BR leaders ILOG and Fair Isaac put Optimization among key
components of their EDM vision:

/ ILOG has for a long time the best tools for different optimization
techniques including famous ILOG CPLEX and CP Solver

.« Fair Isaac recently acquired Xpress-MP and incorporated it in their
product offerings

N\ Many open source optimization products have achieved a competitive level
and now are ready for the prime time

Copyright © 2008 OpenRules, Inc.

Optimization Tech nology (taken from of ILOG’s website)

= Demand p— A Schedule or Plan

with Metrics and:
- Optimization
Resources Model(s) « Minimized Cost
' Cost, Yield & Activity = Maximized Yields
Assumptions P Use One or Many
. _ = Best Possible
Timing of Activiti
Operational Constraints glmim’latiﬂﬂ ming of Activities
: ng ne{s} = Specific Resource
Assignments

— Business Goals —

Optimization technology helps organizations make better plans
and schedules

A model captures your complex planning or scheduling problem.
Then a mathematical engine applies the model to a scenario find
the best possible solution

When optimization models are embedded in applications, planners
and operations managers can perform what-if analysis, and
compare scenarios

Equipped with intelligent alternatives, you make better decisions,
dramatically improving operational efficiency

Copyright, ILOG Inc.

Copyright © 2008 OpenRules, Inc.

J4'j| Constraint Programming:
EULES a bridge between academia and biz

N\ Constraint Programming (CP) is a proven optimization technology

introduced to the business application development at the beginning
of 1990s

N\ During the 90s ILOG Solver became the most popular optimization tool
that was widely used by commercial C++ developers. Being
implemented not as a specialized language but rather as an API for the
mainstream language of that time, ILOG Solver successfully built a
bridge between the academic and business worlds

N\ A few real world CP application examples

N\ CP was especially successful dealing with real-world scheduling,
resource allocation, and complex configuration problems:

« CP clearly separates problem definition from problem resolution
bringing declarative programming to the real-world

« CP made different optimization techniques handily available to
regular software developers (without PhDs in Operation Research)

Copyright © 2008 OpenRules, Inc.

Presenter
Presentation Notes
I happened to be one of the first US independent ILOG’s Solver consultant and an instructor. I am always grateful to ILOG and CP that allowed me to be a part of very challenging and rewarding development. To name a few application in which I personally participated:
 Workforce/Workload management at Long Island Gas&Electic Utility
 Truck Loading and Routing
 Supply Chain management
 Airport Gate Management for FAA
 Grain Train Scheduling for CP Rail in Canada
 Advertisement Scheduling for CNN
 Teleconference Scheduling for MCI, and many more

in 1998 my team and I developed the first CP Solver in Java just before we switched to the BR and started to use CP and BR engines together

O
r

N\ By 2000 the practical use of CP went down. Some reasons
that contributed to this temporary slowdown:

./ Growing use of Business Rules that moved control over business
logic to business people (while CP required experienced
developers)

.~/ Business manager reasoning: “Let me first to externalize and
arrange my business rules, then we will worry about optimization”

/ Java that quickly pushed C++ aside — but there were no good Java
CP Solvers at that time

/ A strong competition from a more straight-forward LP and MIP
software products such as ILOG’s own CPLEX

Copyright © 2008 OpenRules, Inc.

Presenter
Presentation Notes
Goldman Saks in 1999: “if your rules just help us to point to the problem in our portfolio we will be happy. We will worry later how to optimize the portfolio”

Constraint Programming: coming back with EDM

N\ The modern EDM cannot limit itself to the BR technology only.
It also requires predictive analytics, CEP, constraint satisfaction,
optimization, and other decision support techniques

N\ Today CP is coming back as the most business friendly optimization
technique. CP is rapidly becoming a ‘must-have’ capability for decision
management:

.« CP does well where BR stops short especially when :

the number of alternatives goes beyond thousands and millions

III

“closed to optimal” decisions are expected in real time

/# acompromise between time and quality is required

« New powerful CP tools (both open source and commercial) with
friendly business APl became available

N\ Incorporating CP into Business Rules Management systems empowers
a BRMS with much more sophisticated decision-support capabilities

Copyright © 2008 OpenRules, Inc.

Constraints and Rules are similar

N\ Both rules and constraints represent conditions which restrict
our freedom of decision:

/ The meeting must start no later than 3:30PM

« Glass components cannot be placed in the same bin with copper
components

/ The job requires Joe or Jim but cannot use John
./ Mary prefers not to work on Wednesday

« The portfolio cannot include more than 15% of technology stocks
unless it includes at least 7% of utility stocks

N\ Both rules and constraints support declarative programming

. Concentrate on WHAT instead of HOW
/ The same basic idea:

/ a user states the Rules (Constraints)

/# ageneral purpose Rule Engine (Constraint Solver) is used to solve them
/ Note. In OpenRules we actually use the term “Rule Solver”

Copyright © 2008 OpenRules, Inc.

Business Objects with some yet
unknown characteristics

Rules specify relations among these
objects

Rule Engine executes these rules
using Rete or sequential algorithms
to find unknown characteristics

Copyright © 2008 OpenRules, Inc.

@ Problem Representation and Resolution

I

Decision variables with yet unknown
values from a finite domain

Constraints_specify relations among
these variables

Constraint Solver uses different
search strategies to find an
assignment of values to variables
that satisfies all constraints

@ Problem Representation and Resolution: trivial example

_ /

Problem Representation

i X: red
i e Search
— ; = Y: blue
; : e Inference ,

: | : green
Coloring | g
Problem :

- ™
Variables :
Problem i | CPorBR
Values ; . '
Statement . | Algorithm Solution(s)
Constraints :
|

Problem Resolution

@ Constraints and Rules are different

N\ BR Advantage:

/ Rules Repository is managed by business people while
Constraint Store usually was under control of software
developers

N\ CP Advantage:

/ Rules usually have to consider All (1) possible combinations
of the problem parameters

.« Constraints do not have to cover all situations but rather
define an optimization objective and allow a search
algorithm to find an optimal solution

N\ BR+CP provides the best of both worlds:

/ BR defines an optimization problem, CP solves it

Copyright © 2008 OpenRules, Inc.

PEN -
E How the constraint “X < Y” works

ULES

N\ Let’s assume X and Y are defined on the domain [0,10]

N\ Initial constraint propagation after posting X<Y constraint:
X[0;9]
Y[1;10]
N\ Changes in X cause the changesin Y
X>3 =>Y>4
N\ Changes in Y cause the changes in X
Y<=8 => X<=7

N\ Bi-Directional constraint propagation

Copyright © 2008 OpenRules, Inc.

Presenter
Presentation Notes
X + Y = Z actually defines 3 constraints that describe
 how X is changed when Y or Z are changed
 how Y is changed when X or Z are changed
 how Z is changed when X or Y are changed

@ Constraint Propagation (intuitive view)

User Actions: ”Small” Engines

Action Action Action

Automatic Actions - “Big Engines™:

“Scheduler”, “Configurator”, “Router”, ...

Copyright © 2008 OpenRules, Inc.

http://localhost:8080/econstrainer

Rule Engine and CP Solver support similar facilities

N\ Both BR Engine and CP Solver usually provide necessary
problem representation and problem resolution facilities:

Rule Engine CP Solver

Rules repository Constraint Store

Working memory with business Business objects inside a reversible
objects environment

Rules execution mechanisms Constraint Propagation and Goal
(predefined) execution mechanisms (predefined

or defined by a user)

CP Advantage: Predefined CP Concepts

N\ Business Rules always deal directly with business objects

N\ Business Rules are usually created from scratch on top of terms and
facts defined in BOM

N\ CP Solvers provide a rich library of predefined concepts to

define and solve a related constraint satisfaction problem:

N\ Problem Representation:

N\ Predefined Constrained Objects: Integer, Boolean, Real, and Set
variables

N\ Predefined Constraints:

N\ Basic arithmetic and logical constraints and expressions

N\ Global constraints (AllDifferent, Cardinality, ElementAt, ...)
N\ Problem Resolution:

N\ Predefined Search Algorithms (Goals)

@ CSP Sample: “Map Coloring”

N\ A map-coloring problem involves choosing colors for
the countries on a map in such a way that at most 4
colors are used and no two neighboring countries have
the same color

N\ We will consider six countries: Belgium, Denmark,
France, Germany, Netherlands, and Luxembourg

N\ The colors are blue, white, red or green

Copyright © 2008 OpenRules, Inc.

@ Example “Map Coloring”: problem variables

CSP p = new CSP("Map-coloring");
// Define Variables

Var Belgium = p.addInt(0, 3, "Belgium");
Var Denmark = p.addInt(0, 3, "Denmark");
Var France = p.addInt(0, 3, "France");

Var Germany = p.addInt(0, 3, "Germany");
Var Netherlands = p.addInt(0, 3, "Netherlands");
Var Luxemburg = p.addInt(0, 3, "Luxemburg");

Each country is represented as
a variable that corresponds to
an unknown color: 0,1,2, or 3

Copyright © 2008 OpenRules, Inc.

@ “Map Coloring”: problem constraints

// Define Constraints
France.ne(Belgium).post();
France.ne(Luxemburg).post();
France.ne(Germany).post();
Luxemburg.ne(Germany).post();
Luxemburg.ne(Belgium).post();
Belgium.ne(Netherlands).post();
Germany.ne(Netherlands).post();
Germany.ne(Denmark).post();

/I We actually create a constraint and then post it
Constraint ¢ = Germany.ne(Denmark);
C.post();

~

Copyright © 2008 OpenRules, Inc.

% “Map Coloring”: solution search

// Solve
Goal goal = p.goalGenerate();
Solution solution = p.solve(goal);
if (solution !=null) {
for (inti=0; i< p.getintegers().length; i++) {
Var var = p.getintegers()[i];
p.log(var.getName() + " - " + colors[var.getValue()]);

}
}

// Solution:
Belgium —red
Denmark — red
France — green
Germany — blue
Netherlands — green
Luxemburg - yellow

Copyright © 2008 OpenRules, Inc.

Constraint Satisfaction Environment

N\ Predefined classes for Constrained Objects, Constraints, and
Search Goals

N\ Domain representations for major constrained objects

N\ Generic reversible environment

N\ “Try/Fail/Backtrack” capabilities

N\ Powerful customizable event management mechanism

N\ Constraints use events to control states of all constrained objects
N\ Constraint propagation mechanisms
N\ Ability to write problem-specific constraints and search goals

N\ Typical Solver Implementations:

C++, Java, Prolog, different CP Modeling Languages

Some Popular CP Tools

N\ CP Modeling Languages

OPL from ILOG, France (www.ilog.com)

MiniZinc from G12 group, Australia (http://www.g12.cs.mu.o0z.au)
Comet, Brown University (www.comet-online.org)

Prolog (ECLiPSe, SICStus)

N\ C++ API

/ ILOG CP — Commercial from ILOG, France
~ Gecode — Open Source (www.gecode.org)

N\ Java API

N\ N N\

/ Choco - Open Source
/ ILOG JSolver — Commercial
.~ Constrainer - Open Source

N\ 20+ other CP Solvers: http://slash.math.unipd.it/cp/

N\ CP Solvers are usually well integrated with other optimization tools (LP, MIP)

Copyright © 2008 OpenRules, Inc.

@ CP-Inside Project

N\ Generic interface between different CP Solvers and
Business Applications

« Created by Cork Constraint Computation Centre (www.4C.ucc.ie) with support
from Enterprise Ireland and Science Foundation Ireland

N\ Provides a Vendor-Neutral CP API for Java

« Adapters to popular open source and commercial CP solvers
~# Common library of constraints and goals
« Standardization efforts (OMG)

N\ Can incorporate CP-based engines in popular software
tools:

« MS Office (Excel), Rule Engines (OpenRules), Google Calendar and
Facebook Events, MatLab, CEP tools, Lotus Notes, and more

Copyright © 2008 OpenRules, Inc.

EIII’LEE’S‘ CP-INSIDE Architecture (courtesy of www.4c.ucc.ie)

World of Business Appllcatlons Different
BRMS(s)
Web Appllcatlons Interfaces to Popular a

Busmess Interfaces

CP Add-Ons:
Common CPAPI == Scheduler

Configurator
Recommender

Constraint
Library

Search Goal —)

Library I

Open Source Solvers ‘ CommerC|aI Solvers ‘

World of CP Professionals

Copyright © 2008 OpenRules, Inc.

CP-Inside Implementation (courtesy of www.4c.ucc.ie)

Business Applications MatLab Excel OpenRules Google
Google Calendar | CEP T00|S|r ? ? ? BRMS
m V
Tier 1
Business Business | Meeting Scheduler CEP MatLab|[| Excel |{| OpenRules | Google[[”| BR
Interface Users
Tier 2
Common
Common CP-API Interface Scheduler
CSP WE —
Model) C CP-API Impl tati —
ommon CP- mplementation Constraints
Technical
Users
Tier 3
/ /
CP 0
Solvers CHOCO Constrainer ILOG JSolver
..... - Developed

- To be Developed

Ell;LEE’s‘ SUDOKU: integrated use of Rules and CP

6. 1 a Vi 5 I
9

4

8

6 7

Copyright © 2008 OpenRules, Inc.

Sudoku Constraints in Excel Rules Table

1]2 L I
2 Rules void postSudokuConstraints(CpProblem p)
+ g Array Name Variables
6 |o] [7 1 5] | 7 row0 x00 x01 x02 x03 x04 x05 x06 x07 x08
BOEEEQEE B row1 x10 | x11 | x12 | x13 | x4 | x15 | x16 | x17 | x18
BEEEEEREAI BE row? x20 | x21 | x22 | x23 | x4 | x25 | x%6 | x27 | x28 £
e T T T =TT 110 row3 x30 | x31 | x32 | x33 | x34 | x35 | x36 | x37 | x38 E
OHEEEDENIEIK row4 x40 | x41 x42 | x43 | x44 | x45 | 48 | x47 | x48 S
HEBREBERE 180 row5 x50 | w51 | x52 | x53 | x84 | x55 | x56 | x57 | x58 ‘;
HOBROEN BE)EE rows x60 | x61 | x62 | x63 | x84 | x85 | x66 | x67 | x68 2
' HErF N row7 x70 | x11 | «72 | x73 | x714 | «75 | x76 | x77 | x78

Action
CpVariable[] array = p.addArray(name,vars);
p.allDiff(array).post();
String name String[] vars
Array Name Variables
259 DIDCEUY (Y] XU EAVES Kilu K11 1£ N K KL
26 blockd1 x03 x04 x0E6 ¥13 x14 ®15 X232 x24 X25 »
7 block0?2 x0G x0T %08 x16 x17 ®18 x26 K27 X28 %
28 block10 x30 ®31 X322 x40 x4 ®d2 x50 x51 X52 E
29 block11 X33 X34 X35 x43 x44 x45 x53 X594 X595 §
30 block12 ¥36 ®3T7 ®38 x46 x47 x48 x56 x57 x58 =
31 block20 x&60 ®E1 x62 ¥70 X7 X2 %80 x81 x82 %
32 block21 xG3 xG4 x65 XT3 K74 X5 x83 x84 X85
32 block22 patal X6 7 x68 X6 X x78 X868 x87 x88

Copyright © 2008 OpenRules, Inc.

Create and Solve Sudoku Problem in OpenRules with CP

Method void createSudokuProblem({RuleSolver s)

CpProblem p = s_newProhlem()

{f Create 9%9 Square of constrained variables with values from 110 9
CpVariable[] vars = p.addSquare("x",1, 9. 9)

postDataConstraints(p)

postSudokuConstraints(p)

Method boolean solveSudokuProblem{CpProblem p)

CpVariable[] x = p.getAmray("x")

if (p.solve(x. new CpSelectorMinSize(x)) 1= null) {
return true

else {
plog("MNo Solutions”)
return false

See more at www.openrules.com/FanLab.htm

Copyright © 2008 OpenRules, Inc.

@ Constraint Satisfaction Problem - CSP

N\ Typical CSP structure:

1. Define Constrained Variables with all possible values
2. Define Constraints on the variables

3. Find Solution(s) that defines a value for each variable

such that all constraints are satisfied

Copyright © 2008 OpenRules, Inc.

PLEE’S‘ CP-Inside interface for Rules Environments

Rules void addCoreVariables(CSP p)

Name Min Max Is Objective Array Size
X 0 10 FALSE
Y 0 10 FALSE
Z 0 10 FALSE

Cost 2 25 TRUE

Rules void addExpressions(CSP p)

TypeVal =l Variable 1 2plicElel Variable 2 Value 2
Name Operator

XplusY X + Y
XplusY3 XplusY * 3

z4 z * 4
CostExp Rules void addFormuIas(CSP 9)] ‘

Name Formula
{

Var x = p.getint("X");
Vary = p.getint("Y");
Var z = p.getint("Z");
x.mul(3).mul(y).sub(z.mul(4)); // 3xy-4z

Expressionl

See more examples at

Copyright © 2008 OpenRules, Inc.

Real-world example: Workforce/Workload Management

N\ Field Service Scheduling for the Long Island Gas and
Electric Utility

More than 1 million customers in Long Island, NY

More than 5000 employees

Service territory 1,230 square miles

Hundreds jobs per day

Job requires a mix of people skills, vehicles and equipment

N\ Multi-objective Work Planning and Scheduling:

Travel time minimization

Resource load levelization

Skill utilization (use the least costly skills/equipment)
Schedule jobs ASAP

Honor user-defined preferences

Solving Scheduling and Resource Allocation Problems

N\ Scheduling problems usually deals with:

« Activities with yet unknown start times and known durations
(not always)

/ Resources with limited capacities varying over time

 Constraints:

/# Between activities (e.g. Job2 starts after the end of Job1)

/# Between activities and resources (e.g. Job1 requires a welder,
where Jim and Joe both have a welder skills)

N\ There are multiple scheduling objectives (e.g. minimize
the makespan, utilize resources, etc.)

Copyright © 2008 OpenRules, Inc.

How we may create a CP-based Scheduler?

Resource
Constraints:

“requires”
‘consumes”
“and before” “produces”
“provides” Capaci
« Var start gecty
* Var duration |
* Var end _ o
© = | @
> =
Var var > Var -
. . time
I/l Alternative resource requirements

. . Capacity Timetable
activityl.requires(resource2, varReq2).post();

activityl.requires(resource3, varReq3).post();
varReg2.ne(varReq3).post();

Copyright © 2008 OpenRules, Inc.

Scheduling sample

Oven - job scheduling with one resource

There is an oven in which we can fire batches of bricks. There are five orders to fire X batches during Y days.
Schedule all orders to be done in no more than 11 days taking into consideration the following oven availability:

Batches
A
3 =
2
. Davs
H o I T T T o
01 2 3 4 5 6 7 8 9 1011
Global capacity of the oven
Al 2 batches, 1 day
B 1 batch, 4 days S Activities

C 1 batch, 4 days

D 1 batch, 2 days

E 2 batches, 4 davs

Copyright © 2008 OpenRules, Inc.

Scheduling Sample Implementation

CSP problem = new CSP("Oven Scheduling Example");

Schedule schedule = problem.addSchedule(0, 11);

Activity A = schedule.addActivity(1, "A"); # atches, Tday

Activity B = schedule.addActivity(4, "B"): [B]1batcn.4duys
Activity C = schedule.addActivity(4, "C"); i
Activity D = schedule.addActivity(2, "D"); § baich, 2 Cays

Activity E = schedule.addActivity(4, "E"); B 2 batehes, 4 days
Resource oven = schedule.addResource(3, "oven");

oven.setCapacityMax(0, 2); A

oven.setCapacityMax(1, 1); 3"

oven.setCapacityMax(2, 0); 2

oven.setCapacityMax(3, 1); 1 - Davs
oven.setCapacityMax(4, 1); . — >
oven.setCapacityMax(10, 1); 01 2 3 456 7 8 9101

// Resource Constraints

A.requires(oven, 2).post();

B.requires(oven, 1).post(); SOLUTION:

C.requires(oven, 1).post(); A[5 -- 1 --> 6) requires oven|[2]
D.requires(oven, 1).post(); B[3 -- 4 --> 7) requires oven[1]
E.requires(oven, 2).post(); C[7 -- 4 --> 11) requires oven[1]
// Find Solution D[O -- 2 --> 2) requires oven[1]
schedule.scheduleActivities(); E[6 -- 4 --> 10) requires oven[2]

schedule.displayActivities();

Copyright © 2008 OpenRules, Inc.

Over-Constrained Problems

N\ In real-world many problems are over-constrained. If
this is a case, we may want to find a solution that
minimizes the total constraint violation

N\ Consider a map coloring problem when there are no
enough colors, e.g. only two colors:

./ Coloring violations may have different importance
for France — Belgium and France — Germany

/ Find a solution that minimizes total constraint
violations

37

Copyright © 2008 OpenRules, Inc.

@ “Map Coloring with Violations” implementation (1)

static final int MAX = 2;

// Variables

Var Belgium =p.addint(0, MAX - 1, "Belgium");

Var Denmark = p.addint(0, MAX - 1, "Denmark");
Var France = p.addInt(0, MAX - 1, "France");

Var Germany = p.addint(0, MAX -1, "Germany");
Var Netherlands = p.addInt(0, MAX - 1, "Netherlands");
Var Luxemburg = p.addint(0, MAX - 1, "Luxemburg");

Var[] countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxemburg };

Copyright © 2008 OpenRules, Inc.

@ “Map Coloring with Violations” Implementation (2)

// Hard Constraints

France.ne(Belgium).post();

France.ne(Germany).post();

Belgium.ne(Netherlands).post();

Germany.ne(Denmark).post();

Germany.ne(Netherlands).post();

// Soft Constraints

Var[] weights = {
France.eq(Luxemburg).tolnt().mul(257),
Luxemburg.eq(Germany).tolnt().mul(9043),
Luxemburg.eq(Belgium).tolnt().mul(568)

Iy

Var weightedSum = p.sum(weights);

Copyright © 2008 OpenRules, Inc.

39

@ “Map Coloring with Violations” Implementation (3)

// Optimal Solution Search

Solution solution =
p.minimize(p.goalGenerate(countries),weightedSum);

if (solution == null)

p.log("No solutions found");

else

solution.log();

Solution:
Belgium[0] Denmark[1] France[l] Germany[0] Netherlands[1l] Luxemburg[1]

40

Copyright © 2008 OpenRules, Inc.

@ BR+CP Integration

N\ Business rules could be used to define and modify a business
objects

N\ Rule Engine can generate a related constraint satisfaction
problem/subproblem representing it in terms of constrained
objects and constraints

N\ CP Solver can solve the optimization problems and return the
results to the Rules Engine for further analysis

‘ Rule Engine ||:>| Rule Solver |I:> ‘ Rule Engine '

/ / /
[Business Problem J [Constraint Satisfaction Problem J [Business Problem]

Copyright © 2008 OpenRules, Inc.

[

Online Problem
Resolution

]

A

L4

Rule Solver

BR + CP Integration Schema

&

Problem

Solving

F47

1

Selected Problem
Configuration

Rule Engine

Constraints &
Algorithms

a8
Problem
Configuration

it

Rules

Copyright © 2008 OpenRules, Inc.

Decision Service

Optimization
Expert

N

Fules Repository

Business
Analysts

OEEN Online Decision Support:
HI/13) modeling and solving constraint satisfaction problems

N\ Typical Online Systems with CP-based Solvers:

/ Online Reservation systems (hotels, tours, vacations, ..)
« Event Scheduling (both business and personal events in social networks)
« Field Service Scheduling, Advertisement Scheduling, and more

N\ Traditional Approach: s

Solver

(“universal” model and
search strategy)

« “Fat” Problem Solver tuned for all possible problem states
./ Complexity grows over time — hard to create and maintain

Copyright © 2008 OpenRules, Inc.

Presenter
Presentation Notes
 “universal” problem definition and resolution strategy
Designers frequently concentrate on a creating a “universal” heuristic that can find a “robust” vs. “optimal” solution
Important observation: for every particular problem we know how to evaluate/compare the solver results

Online Decision Support: CP + BR
adding Rule Engine to find the “best” strategy

CP Solver
(the “best” strategy)

E -_*@
Rule Engine

Business
Analysts

Copyright © 2008 OpenRules, Inc.

Presenter
Presentation Notes
Strategy for CSP Definition and Resolution
Examples:
Choice of variables representations based on the CSP state analysis (“sparse” domain vs domain with many “holes”)
Heuristic choice (based on number of variables and sizes of their domains, etc.)

Online Decision Support: CP + BR + ML
adding Rule Learner to find the “best” strategy

CP Solver
(the “best” strategy)

Rule Engine

State
Analyzer

Rule Learner

Copyright © 2008 OpenRules, Inc.

Presenter
Presentation Notes
Strategy for CSP Definition and Resolution
Examples:
Choice of variables representations based on the CSP state analysis (“sparse” domain vs domain with many “holes”)
Heuristic choice (based on number of variables and sizes of their domains, etc.)

%Summary

N\ Integration of BR and CP empowers a BRMS with much
more sophisticated decision-support capabilities

N\ BR+CP methodology and tools are available in a
vendor-neutral way

N\ Online decision support may be done with

7 CP or BR only: Hard to create and maintain “fat” Solvers controlled by IT

/ CP + BR: Rule Engine recommends a CSP model and search strategy based on
state analysis rules controlled by business analysts

/ CP + BR + ML: Rule Learner discovers model/strategy selection rules based
on historical Solver runs — “Ever-learning” decision support!

Copyright © 2008 OpenRules, Inc.

Thank you

Q&A

Copyright © 2008 OpenRules, Inc.

	�
	 “Shock Troops” for Decision Support
	 Introduction
	 New buzzword “Business Optimization”
	 Optimization is back
	 Optimization Technology (taken from of ILOG’s website)
	 Constraint Programming: �a bridge between academia and biz
	 Constraint Programming: Y2K
	 Constraint Programming: coming back with EDM
	 Constraints and Rules are similar
	 Problem Representation and Resolution
	 Problem Representation and Resolution: trivial example
	 Constraints and Rules are different
	 How the constraint “X < Y” works
	 Constraint Propagation (intuitive view)
	 Rule Engine and CP Solver support similar facilities
	 CP Advantage: Predefined CP Concepts
	CSP Sample: “Map Coloring”
	Example “Map Coloring”: problem variables
	“Map Coloring”: problem constraints
	“Map Coloring”: solution search
	 Constraint Satisfaction Environment
	Some Popular CP Tools
	 CP-Inside Project
	 CP-INSIDE Architecture (courtesy of www.4c.ucc.ie)
	 CP-Inside Implementation (courtesy of www.4c.ucc.ie)
	SUDOKU: integrated use of Rules and CP
	 Sudoku Constraints in Excel Rules Table
	 Create and Solve Sudoku Problem in OpenRules with CP
	Constraint Satisfaction Problem - CSP
	 CP-Inside interface for Rules Environments
	 Real-world example: Workforce/Workload Management
	 Solving Scheduling and Resource Allocation Problems
	 How we may create a CP-based Scheduler?
	 Scheduling sample
	 Scheduling Sample Implementation
	Over-Constrained Problems
	“Map Coloring with Violations” implementation (1)
	“Map Coloring with Violations” Implementation (2)
	“Map Coloring with Violations” Implementation (3)
	 BR+CP Integration
	 BR + CP Integration Schema
	Online Decision Support: �modeling and solving constraint satisfaction problems
	Online Decision Support: CP + BR�adding Rule Engine to find the “best” strategy
	Online Decision Support: CP + BR + ML adding Rule Learner to find the “best” strategy
	Summary
	Thank you

