
F. Olten, M. Palmirani, D. Sottara (Eds.): RuleML - America 2011, LNCS 7018, pp. 208–221, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Representing and Solving Rule-Based Decision Models
with Constraint Solvers

Jacob Feldman

OpenRules, Inc., 75 Chatsworth Ct.,
Edison, NJ 08820, USA

jacobfeldman@openrules.com

Abstract. This paper describes how constraint solvers could serve as rule
engines in the context of modern business decision management systems.
Decision models are based on rule families oriented to business users and
frequently represented as Excel decision tables. The proposed approach uses
exactly the same representation of decision models as a rule engine. The
developed Rule Solver loads a decision model from multiple Excel files,
generates a constraint satisfaction problem, and then validates it for
consistency, diagnosing possible conflicts. Finally, it solves the problem,
delivering results using the same terms as business rules. In fact, a user may
switch between a rule engine and a constraint solver without changing the rules
themselves. Additionally, Rule Solver can find solutions or find an optimal
decision when business rules only partially define a problem. Rule Solver is
implemented as an advanced component of the popular open source business
decision management system “OpenRules”.

Keywords: Decision Model, Rule Family, Constraint Satisfaction, Rule
Engine, Constraint Solver.

1 Introduction

In recent years, decision management services have become key components of real-
world business applications in banking, insurance, healthcare, telecommunication,
advertising, and many other industries. They are frequently based on predictive
analytics, business rules management, complex event processing, optimization, and
other business intelligence technologies. According to IDC [1] the decision
management software market is expected to exceed $10B by 2014 – doubling in the
five years from 2009. Business rules management systems (BRMS) and rule engines
are already “must-have” components for decision management. At the same time,
constraint programming (CP) has been successfully used for years to find optimal
solutions for complex industrial problems. However, it is only now CP is starting to
penetrate the world of business decision support applications. In this paper, we show
how existing CP solvers can be effectively used as an execution mechanism for
complex decision models.

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 209

There are two major implementations of rule engines available on the market
today:

1) Inferential rule engines that support a pure declarative representation of
business rules;

2) Sequential rule engines that rely on user-defined sequencing of rules and rule
families.

The famous Rete algorithm was invented by Charles Forgy almost 40 years ago [2]
and it still remains the major foundation for most implementations of inferential rule
engines [4], [5], [6], [7]. Sequential rule engines are used by many commercial and
open source engines ([20], [21], [8], [9]), which recognized that in many practical
applications manual rules sequencing is a preferred mode. Even vendors of the major
Rete-based rule engines added special sequential modes to more effectively compete
with their sequential counter-parts. However, the newest decision management
methodologies ([3], [22]) without insisting on any particular rule engine
implementation, require that there should be no rules ordering within rule sets, and
between rule sets. These declarative principles simply cannot be supported by
sequential rule engines which makes Rete again the dominating implementation
approach.

Over the years, Rete went through many enhancements, but until now there were
no practical alternatives to Rete for implementation of non-sequential rule engines in
the business rules world. At the same time, Prolog-based tools and different
constraint solvers (see the list of products in [23]) have been successfully used for
years to resolve complex optimization problems defined in terms of rules and
constraints. However, these tools usually require a deep understanding of the
underlying technologies, and are mainly oriented to software developers, not to
subject matter experts. This fact limits the real-world acceptance of these
technologies. Making these tools available to business users through their favorite
interfaces such as Excel-based decision tables and/or different BRMS rule editors, can
bring constraint-based technologies to the practical decision management world.

In this paper we propose a new, constraint-based approach to the implementation
of inferential rule engines that can execute rule-based decision models [3]. The
proposed approach is functionally similar to Rete-based rule engines in its support of
declarative principles for business rules organization. On the one hand, it allows a
user to execute decision models using exactly the same business rules without any
additional coding. On the other hand, it does not require explicit sequencing of rules
inside a rule family or a strict execution order of related rules families. For every
input dataset, a constraint-based rule engine executes all related business rules and
either infers a decision or diagnoses conflicts among rules and input data.
Additionally, it can find solutions when business rules only partially define a
problem. When an optimization objective is defined by the rules, it also can find an
optimal decision instead of forcing a user to specify enormous amount of rules to
compare different decisions. The proposed approach is implemented as a component
of the open source business decision management system “OpenRules” [8], in which
it is called “Rule Solver”. We will use this name throughout this paper when referring
to the proposed approach and its implementation.

210 J. Feldman

2 The Decision Model

Rule Solver does not deal with any particular rule language, but rather executes rule-
based decision models created by business users in accordance with the
methodological approach known as “The Decision Model” [3]. The Decision Model
was introduced two years ago by Barbara von Halle and Larry Goldberg and quickly
gained popularity as a practical methodology for developing Business Decision
Management Systems (BDMS) for large financial services, insurance, health care, and
other industries. According to the authors, “The decision model is a representation of
fact-based business logic within a scope of a single business decision”. Examples of
such decisions are “Determine Loan Eligibility”, “Define Insurance Premium” or
“Determine Medical Treatment”. The Decision Model is oriented to subject matter
experts (business analysts who are not software developers) providing them with a
strictly defined notation, as well as concepts and principles that they should follow to
build maintainable decision support systems. The Decision Model is defined as
technology agnostic, meaning that different BRMS products may provide different
implementations of the same decision models.

The Decision Model is defined in [3] as “an intelligent template for perceiving,
organizing, and managing business logic behind a business decision (specifically, a
representation of business logic statements that together lead to a single business
decision, and which complies with the 15 Decision Model principles)”. The rigor of
the Decision Model is embodied in these 15 principles that are divided into structural,
declarative, and integrity principles. In particular, they specify how to organize and to
connect Rule Families.

2.1 Rule Families

Rule Families are the heart of the Decision Model and they are defined as traditional
decision tables but with certain limitations. A Rule Family is a decision table that
consists of 0 or more conditions and only one conclusion. If there is more than one
condition, then all of them are connected by the logical operator “AND”. Examples of
Rule Families are shown in Figures 1 and 2.

Fig. 1. Rule Family “PersonLikelihoodOfDefaultingOnLoan”

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 211

This Rule Family consists of four AND’ed condition columns and a single
conclusion column. Each column is associated with one fact type (e.g. “Person
Employment History”). Multiple rows (rules) specify the fact using an operator
(e.g.”<=” or “Is”) and a value (e.g. “Poor”).

Fig. 2. Rule Family “PersonEmploymentHistory”

Conditions and conclusions may use different business fact types shared by
different Rule Families. The fact types used in conditions of one Rule Family may be
defined by conclusions of other Rule Families. For example, Figure 2 shows a Rule
Family that specifies the value for the fact “Person Employment History” used by the
dependent Rule Family in Figure 1. This is an example of so called “inferential
relationships”. According to the “Declarative Inferential Relationship” principle [3],
there should be no implied sequence in the path among Rule Families related through
such inferential relationships.

The Decision Model includes other important principles that support the integrity
of Rule Families, among which are some that are especially important for automatic
execution of the Decision Model.

The “Declarative Body” principle states that “the entries in the body of a Rule
Family are unordered” [3]. In particular, it means that a user may insert new rules into
a Rule Family without worrying about any particular order. This principle imposes
very strong requirements not only upon the rule engine that will execute the Decision
Model, but also on the designer of Rule Families. It excludes the (sometimes very
convenient) ability override rules and forces a Rule Family author to consider almost
all possible combinations among condition values.

The “Rule Family Consistency” principle states that “a Rule Family should be free
of inconsistencies such as overlapping conditions or more than one conclusion” [3].
The conditions need to cover only a subset of the fact type’s domains that are within
scope of a Rule Family. At the same time, a Rule Family must result in at least one
conclusion value for any set of valid input values for condition fact types.

212 J. Feldman

2.2 Business Glossary

Fact types used by all Rule Families are collected in one special table called the
“Business Glossary”. Usually a glossary defines the following information about fact
types:

- Business names of the fact types defined exactly in the same way they are
used in Rule Families;

- Business Concepts to which these fact types belong;
- Domains with all possible values of the fact types;
- Technical names of fact types for integration of the Decision Models with

actual business object models used by programmers.

Figure 3 shows an example of the business glossary for rule families presented in
Figures 1 and 2.

Fig. 3. Example of a Business Glossary

2.3 Top-Down Design

The Decision Model promotes a top-down design approach that starts with a top-level
decision which can be described through sub-decisions and their associated Rule
Families. For the above examples of Rule Families, the proper Decision table is
presented in Figure 4.

Fig. 4. The Decision Model “DetermineLikelihoodOfDefaultingOnLoan”

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 213

The Decision Model can be considered as a hierarchy of decisions presented in a
graphical form [3] or a tabular form [8]. For example, using the table of the type
“Decision” we may present a top-level decision and its sub-decisions in Excel tables
similar to the ones on Figure 5.

Fig. 5. Decisions and Sub-Decisions

The first table specifies a top-level decision using 5 sub-decisions and Rule
Families that implement their business logic. For instance, the decision “Define Fact
2” is defined by two Rule Families “RuleFamilyFact21” and “RuleFamilyFact22”. At
the same time, the decision “Define Fact 3” is defined using a separate decision table
“DecisionFact3”.

According to the Decision Model [3], there should be no inferential dependencies
among inferentially related Rule Families. Correspondingly, the order of fact
definitions inside the above decision tables should not matter during the execution of
these models.

The decision can be also defined through other decisions using different
conditions. For example, Figure 6 demonstrates a situation when the first sub-decision
validates your data and the second sub-decision executes complex calculations but
only if the data validation was successful.

Fig. 6. Conditional Sub-Decisions

214 J. Feldman

2.4 Test Cases and Real Data

The test cases like Rule Families and all other components of the Decision Model can
be defined by business people directly in Excel. Figure 7 shows an Excel table that
defines a data type for the business concept “Person” (defined in the glossary in
Figure 3 above.)

Fig. 7. An example of a Datatype table used for Decision Model testing

Instead of an Excel-based data type, we may use a regular Java class Person that is
defined as a Java bean by the Java application in which this Decision Model is going
to be incorporated. Figure 8 shows an Excel table that contains concrete test instances
of type Person called “borrowers”.

Fig. 8. An example of a Data table with test instances

When the Decision Model is integrated with a Java or .NET application, actual
data instances can be used by the same Decision Model without any changes in the
business logic.

The described components of the Decision Model “DefinePersonLikelihoodOf
DefaultingOnLoan” are sufficient for Rule Solver to either execute this model
inferring a correct decision or to inform a user about possible inconsistencies.

3 Constraint-Based Implementation

Formally, the Decision Model can be described as follows:

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 215

- There is a set of business objects X = { X1, …, Xn }
- Each business object Xi has fact types Fi = { f1, …, fm } with possible values

Dj = { vj1, …, vjk } for each property fj
- There is a set of rules R = { R1, …, Rr }, where a rule Rk defines relationships

between different fact types by specifying the allowed combinations for all
fact types in that rule.

The rules from set R are grouped into Rule Families that are organized in accordance
with the Decision Model principles. Execution of the Decision Model should cause
the assignment of values to all fact types that satisfy the rules.

This representation demonstrates that the Decision Model is quite similar to a
typical constraint satisfaction problem (CSP) where fact types Fi correspond to
constrained variables with known domains Dj and where rules Rk correspond to
conditional constraints.

Thus, to use a constraint solver as a rule engine that is capable of executing a
decision model compliant with The Decision Model principles, we need a tool that
can do the following:

- read the decision model created by business analysts directly from the rule
repository (i.e. from a set of Excel files) without requiring the manual
transfer of the model into any CP language

- generate a CSP that corresponds to this decision model
- validate the consistency of the model by checking the consistency of the

generated CSP and point to possible conflicts using the business terms of the
initial decision model

- execute the decision model against concrete data using the following steps:
o instantiating all constrained variables for which input data is

defined
o posting all constraints that correspond to rules from all Rule

Families
o if constraint propagation by itself does not find single values for all

fact types (does not instantiate all constrained variables), then run a
constraint solver’s search strategy that finds one or more solutions.

OpenRules Rule Solver provides the described functionality by downloading all
decision model tables directly from Excel files and then automatically generating
and solving a corresponding constraint satisfaction problem. Rule Solver is based
on the standard Java Constraint Programming API defined by the Java Specification
Request (JSR) 331 [19]. The use of the JSR 331 allows a user to not commit to a
particular CP vendor and to try different underlying solvers before choosing the
most suitable one based on its technical and business applicability. A user may
switch between different underlying CP solvers compliant with the JSR 331 without
any changes in the code. Below we will use a simple example to describe how Rule
Solver works.

216 J. Feldman

3.1 Fact Types as Constrained Variables

First, Rule Solver creates a CSP instance using the class RuleSolver inherited from
the JSR 331 class Problem:

RuleSolver rs = new RuleSolver();

Then it iterates through the glossary and for each fact type it creates a constrained
variable of one of the following types:

- Var for integer constrained variables
- VarBool for Boolean constrained variables
- VarReal for real constrained variables
- VarString for string constrained variables.

Rule Solver automatically converts fact type domains from the glossary, to the
domains of the constrained variables as they are specified by JSR 331. While the
glossary does not specify a particular type of the fact types, the concrete types of
variables are defined based on the provided data instances. For example, a constrained
variable that corresponds to the fact type “Person Outside Credit Score” will be
created using the following JSR 331 method:

 rs.variable(“Person Outside Credit Score”, 0, 999);

The Decision Model may use aggregated fact types, for example arrays of strings.
Consider the Rule Family in Figure 9 that specifies up-selling rules.

Fig. 9. An example of a Rule Family with aggregated fact types

Here the fact type “Customer Products” is an array of strings that represents
banking products that a customer already has. The fact type “Offered Products”
represents additional products a bank is ready to offer to a customer based on the

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 217

customer’s profile and the set of existing products. Rule Solver represents such fact
types using constrained set variables (the JSR 331 standard type VarSet) and posts the
proper constraints defined on these set variables.

3.2 Rules as Conditional Constraints

While processing the Decision Model tables and related Rule Families, Rule Solver
creates conditional constraints in the form:

 conditionConstraints.implies(conclusionConstraint)

where “conditionConstraints” are accumulated by using the method “and” defined for
the JSR-331 class Constraint. For example, the rule

IF Person Years at Current Employer < 1
AND Person Number of Jobs in Past Five Years > 5
THEN Person Employment History = Poor

may be implemented in Java using the JSR-331 interface:

Var var1 = rs.getVar(“Person Years at Current Employer”);
Constraint c1 = rs.linear(var1, ”<”, 1);

Var var2 = rs.getVar(“Person Number of Jobs in Past Five Years”);
Constraint c2 = rs.linear(var2, ”>”, 5);

Constraint conditionConstraints = c1.and(c2);

VarString var3 = rs.getVarString(“Person Employment History”);
Constraint conclusionConstraint = rs.linear(var3, ”=”, “Poor”);

rs.add(conditionConstraints.implies(conclusionConstraint));

However, Rule Solver never generates Java or any other code. Instead, at run-time, it
simply creates an instance of different JSR 331 classes and adds them to the already
created constraint satisfaction problem (an instance of the class “RuleSolver”). All
instances of constrained variables and constraints are added to the problem “on the
fly”. How does Rule Solver actually generate this CSP? It does not use any special
code parser and/or generator. Instead, it effectively relies on the existing OpenRules’s
templatization mechanism.

OpenRules uses different rule templates to implement all tables included into the
default (not constraint-based) implementation of the Decision Model. Such tables as
“Decision”, “RuleFamily”, and “Glossary” are actually implemented based on rule
templates defined in several configuration Excel files. For example, the file
“RuleFamilyExecuteTemplates.xls” contains a template with the fixed name
“RuleFamilyTemplate” and all Rule Families are created based on it. This template is
a regular OpenRules “single-hit” rules table. It means that it is trying to execute rules
in top-down order by evaluating their conditions. When all conditions inside a rule are
evaluated as TRUE, the rule’s conclusion (and possibly other related actions) will be
executed and all remaining rules will be ignored.

218 J. Feldman

Rule Solver provides another configuration file “RuleFamilySolveTemplates.xls”
that substitutes the template “RuleFamilyTemplate” with a different implementation that
is actually a special “multi-hit” rules table. This rule table executes all rules inside every
Rule Family. However, instead of evaluating rule conditions it simply creates new
constraints similar to c1 and c2 above, and then “AND”s all previously defined
conditions similarly to c1.and(c2). Thus, all conditions from one rule will form a
constraint conditionConstraints described in the previous example. Then the
conclusion will be converted to the conclusionConstraint that is based on the
constrained variable associated with the conclusion’s fact type, operator, and value.
Finally, Rule Solver creates a new constraint conditionConstraints.implies
(conclusionConstraint) and adds it to the problem. According to the JSR 331, this
constraint states that if the constraint conditionConstraints is satisfied then the
constraint conclusionConstraint also should be satisfied.

While the “RuleFamilyTemplate” may contain more complicated constructions,
the very fact that the generated CSP can be reconfigured by simply changing the
template directly in Excel, makes this approach extremely flexible, extensible, and
customizable for different needs.

3.3 Consistency Validation

Rule Solver provides a user (a business analyst who creates and maintains the rules
within the Decision Model) with several consistency validation modes.

Mode 1. Validate rules consistency. In this mode, Rule Solver simply posts all already
added constraints one-by-one with constraint propagation turned on. If a constraint
fails to be posted, a user will be notified that the associated rule is in conflict with the
rules, for which the corresponding constraints were previously posted.

Mode 2. Validate rules consistency using test data. In this mode, before posting any
constraints, Rule Solver is trying to instantiate constrained variables, for which the
proper test data is defined. If an error occurs, the user will be informed about invalid
data. If there are no errors in the data, then Rule Solver will try to post all
automatically defined constraints for all involved Rule Families. The constraints again
will be posted one-by-one with constraint propagation on. If a constraint fails to be
posted, the user will be notified that the associated rule is in conflict with previously
posted constraints (rules). To help a user find the reason for the conflict, Rule Solver
will display the current state of all instantiated (or only partially instantiated)
variables corresponding to the fact types.

Mode 3. Validate rules completeness. If the previous modes do not produce errors,
Rule Solver validates whether the Rule Family consistency principle has been
satisfied. This principle states that “a Rule Family must result in at least one
conclusion value for any set of valid input values.” So, Rule Solver determines
whether all constrained variables have been instantiated for all conclusion fact types.
If all Rule Families have been fully defined in accordance with the Decision Model
principles, constraint propagation will be sufficient to determine a decision.

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 219

In real-world decision management environments, not all Rule Families are created at
the same time, and as a result, the Decision Models frequently can be found to be
incomplete, but still producing satisfactory results on the data that have been used.
However, a user may not even know about potential problems with such decision
models. In this case Rule Solver provides a user with a list of fact types that remain
undefined. These fact types are displayed with all remaining possible values from
their domains that may have been reduced. This information prompts a user to
identify which rules should be extended to cover the remaining situations.

It is important to emphasize that Rule Solver validates consistency of not only one
Rule Family but of all Rule Families included in the Decision Model and related
through inferential relationships! Otherwise, it may be extremely difficult for the
author of the rules to predict how adding or modifying a single rule in one Rule
Family may affect the execution logic of dependent Rule Families. There could be
hundreds and even thousands of Rule Families in real-world decision support
applications, and it would be humanly impossible to maintain their consistency
relying only on test cases. Rule Solver helps business users to keep their entire
Decision Models in a consistent state.

3.4 Finding Solutions for Partially Defined Decision Models

In some practical situations a creator of a decision model cannot strictly specify all
possible combinations of values for all conditions. Instead, users frequently cover
only a subset that according to the Decision Model is “within scope” [3].
Unfortunately, this means that such incomplete Decision Models will not produce any
decision for certain data sets. Rule Solver helps a user to deal with this problem by
simply executing the default search strategy after all data and rule constraints have
been posted. Rule Solver offers a user the following options:

- find a single solution that satisfies all currently specified rules (constraints);
- find several solutions by specifying a limit for the maximal number of

solutions or by limiting the amount of time during which solutions may be
calculated;

- find a solution that minimizes (or maximizes) an optimization criteria
defined by a user as an expression of the existing fact types.

In this manner, Rule Solver goes well beyond traditional inference rule engines by
empowering business users with a new functionality without forcing them to specify
rules for all possible situations.

4 Related Work and Future Development

The integrated use of business rules and constraint programming has been described
in several works [12], [13], [15], [16]. In most cases, business rules are used to define
a specific business problem and then CP is used to solve the problem. The early
versions of Rule Solver [8] offered generic rule templates that allowed a user to
directly use CP concepts represented through business rules. The closest approach to
the one described in this paper was proposed in [14] where an automatically generated

220 J. Feldman

CSP was used to validate the consistency of a stand-alone classification rules table.
However, that previous approach did not validate the consistency of multiple decision
tables and, more importantly, was not able to execute the rules. To the best of our
knowledge there were no known software products that use a constraint solver as a
truly declarative (not sequential) rule engine.

With the Decision Model gaining in popularity as a decision management
methodology, several vendors extended their product offerings to enable the creation
and management of decision models in accordance with [3]. Such products as
SAPIENS [9], interGREAT [10], and RuleGuide [11] provide powerful graphical
interfaces for the creation and validation of decision models and OpenRules 6.0.1 [8]
released in March 2011 became the first business rules product that allows business
users to define and execute their decision models.

The approach described in this paper has been implemented as an advanced Rule
Solver component of the OpenRules BDMS [8]. It allows a user to check if custom
decision models are compliant with the Decision Model principles [3]. In cases when
these principles have been violated, Rule Solver shows a user how to improve their
models. In addition to traditional rule engine functionality, Rule Solver can deal with
practical situations where a custom decision model does not cover all possible
combinations of fact types. Instead of simply failing to find a decision, Rule Solver
can offer a user either a feasible or an optimal solution.

The proposed approach has not yet been tested on large industrial problems. It was
also not possible to do a performance comparison with Rete-based rule engines since
there are still no available Rete engines that implement The Decision Model.
However, the automatically generated CSPs are simple from the CP perspective, they
are highly constrained and do not require an optimal search for many practical
situations. When we conducted performance tests using relatively small rule sets and
the default search strategies of several open source CP solvers, the high performance
results came as no surprise. CP solvers have proven records of solving much more
complex constraint satisfaction problems to compare with ones that automatically
generated from the decision models. However, we plan to conduct further tests using
more complex rules with multiple inferential dependencies and data coming from
real-world projects.

From a practical perspective, the performance should not be an issue as it is not an
issue for most existing rule engines. What is especially important is the fact that the
Decision Models can be executed “as is” without any conversion of the original
Excel-based rule families (created by business users) and without additional coding.
The creators of business rules, who usually have no idea about Rete or any other rule
engine algorithm, do not have to know anything about CP either. They may continue
to use only business terms to define their business logic and the system will
communicate with them in the same terms. As a result, business users can test and
maintain their decision models themselves without help from software developers.
The same decision model can be used with Rule Solver to validate its consistency, but
then a user may switch back to a conventional rule engine to execute the model.

OpenRules plans to extend Rule Solver by covering more types of business facts
with more operators (and related constraints) defined on these facts. We also plan to
add the ability to minimize rule violations in accordance with the approaches
described in [17] and [18].

 Representing and Solving Rule-Based Decision Models with Constraint Solvers 221

Since Rule Solver’s implementation is based on the JSR-331 standard [19], it
remains independent of the underlying CP solvers. It also allows any JSR-331
compliant CP solver to use Rule Solver as a front-end for integration with business
rules products. At the same time, different BRMS vendors may use the proposed
approach to extend their product offerings by adding constraint-based rule engines.

References

1. Worldwide Decision Management Software 2010-2014 Forecast: A Fast-Growing
Opportunity to Drive the Intelligent Economy. IDC Report for December 2010 (2010),
http://www.idc.com/getdoc.jsp?containerId=226244

2. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19, 17–37 (1982)

3. von Halle, B., Goldberg, L.: The Decision Model: A Business Logic Framework Linking
Business and Technology. Auerbach Publications/Taylor & Francis Group, LLC (2009)

4. IBM WebSphere ILOG JRules,
http://www-01.ibm.com/software/integration/business-
rulemanagement/jrules/

5. FICO Blaze Advisor business rules management, http://www.fico.com
6. JESS, the Rule Engine for the Java platform, http://jessrules.com
7. Drools, The Business Logic Integration Platform, http://www.jboss.org/drools
8. OpenRules, Open Source Business Decision Management System,

http://openrules.com
9. Sapiens International Corporation N.V, http://www.sapiens.com

10. inteGREAT Enterprise 2010, http://www.edevtech.com/index.html
11. RuleGuide, New Wisdom Software, http://www.newwisdomsoftware.com
12. Bousonville, T., Focacci, F., Le Pape, C., Nuijten, W., Paulin, F., Puget, J.F., Robert, A.,

Sadeghin, A.: Integration of rules and optimization in plant powerops. In: van Beek, P.
(ed.) CP 2005. LNCS, vol. 3709, pp. 1–15. Springer, Heidelberg (2005)

13. Feldman, J., Korolov, A., Meshcheryakov, S., Shor, S.: Hybrid use of rule and constraint
engines, Patent no: WO/2003/001322, World Intellectual Property Organization

14. Feldman, J., Korolov, A., Meshcheryakov, S., Shor, S.: Consistency validation for complex
classification rules. Patent no: WO/2003/017060, World Intellectual Property Organization

15. Feldman, J., Freuder, E.: Integrating business rules and constraint programming
technologies for EDM. In: The 11th International Business Rules Forum (2008)

16. van der Krogt, R., Feldman, J., Little, J., Stynes, D.: An Integrated Business Rules and
Constraints Approach to Data Centre Capacity Management. In: Cohen, D. (ed.) CP 2010.
LNCS, vol. 6308, pp. 568–582. Springer, Heidelberg (2010)

17. O’Sullivan, B., Feldman, J.: Using hard and soft rules to define and solve optimization
problems. In: The 12th International Business Rules Forum (2009)

18. Feldman, J.: Rules Violations and Over-Constrained problems. October Rules Fest (2009)
19. Java Request Specification (JSR) 331: Constraint Programming API. Java Community

Process, http://www.jcp.org/en/jsr/detail?id=331
20. Corticon, Business Rules Management System, http://corticon.com
21. Visual Rules, Business Rules Management System, http://visual-rules.com
22. Ross, R.G.: Decision Analysis Using Decision Tables and Business Rules,

http://www.brsolutions.com/b_decision.php
23. ACP, Association for Constraint Programming System,

http://www.4c.ucc.ie/a4cp

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

