OPENRULES®

Open Source Business
Decision Management System

Release 6.4.1

User Manual

OpenRules, Inc.
www.openrules.com
December-2016

http://www.openrules.com/

OpenRules, Inc. OpenRules® User Manual

Table of Contents

1019 o T 11 Lot 1 Lo o B PTN 7
2T =Y o T o TV P 7
OpenRuIes® {8007 0T T 4 1= o 1 8
[ToTol W] 0 T=T 01 A 0o 0 1Y 7=T 41 T 4 T 9

(000 T (=N 8 1 Lol -] 1 &3S 9

Decision Modeling and EXeCULIONcevvveueriiiieeeniisiiseniisissnssissssnessssssssssssssssnssonns 10
Starting With DeCiSION......cccuuciiiieciirrcccirrerccr e st e e s rrnese s s e sns s e ennssessennssessennssessennnnanne 11
Defining Decision TAbIesccue i reee s e e rres s s e sa s s s e na s ssenassssnenanas 14

Decision Table EXECULION LOGIC ..uuiiviuriiieiiiiiii ettt e 16
AND/OR CONAITIONS ..eiiiiiveiieieitieiee ettt e e et e e e et e e e s bae e e e ssarreeesesaaeeeeesbaeeesssnnees 17
DeCiSion Table OPerators......cccueeeieciieee et e e e e e srae e e e s aaae e e e eaeees 17
Conditions and Conclusions without Operatorsccccccuveeviiiieeicriieee e 20
Expressions Inside Decision Tablescccuciiieeuciiieiiiiireccerececcsreresc s reneneesenanesssennsssssennnes 21
OpenRules Expressions as Java SNIPPELS ...ccvveveeiciiieiirieee et esree e sseee e s sieeee e 22
Using Macros in OpenRuUIEs EXPreSSioNSeeeeecuveeriieiieeeeeiiieeeesiieeeeesinneessssneeens 22
Dealing with String Variables ... 24
Dealing with Date Variables..........uuo i 24
USING Big DECIMAIS ..uvviie ittt e e s e e e e e e e aaeee s 25
Using Regular Expressions in Decision Table Conditions.........ccccccvvvvvveeeeeeeeiccnnnneee. 26
DIMN FEEL EXPrESSIONS ..evvveiereverererurerererereseseressreseresssesesssesssesssssssssnsssssssssnsssssssssssssnnes 27
Using Names With SPacescocuuuvieiieeie e e e 28
Turning FEEL Processing ON/Offvve ittt 29
Allowed FEEL Operators and Predefined FUNCLIONScccoeveciiiiiieeeeiicccieeee, 29
Using '-' as a Not Applicable Symbol Inside Decision Tables........ccccccceeeeeeeicnnnnene. 31
Defining BUSINESS GlOSSArY.......cciiiuuuiiiiiiuieiieniieiienietienssiereenssisrsensssssenssssssensssssssnsssssssnnsns 31
Defining TesSt Datacccccciiiiiiiiiiiiiiiiiiierienierreneiesesnessesssnssssnesasssssennsssssennssssssnnsssssannnns 33
Connecting the Decisions with Business ObjJects.........cccccceiieeieiiiieieiiieecenieeecenneenneesseennenns 34
DeCiSION EXECULION.....ccuiiieeiiiieiiieiiteiiieiiineieteniteeereasistnssssnssssssssssessssnssssnssssnssssnnssssassnsnne 35
DECISION ANAIYSIS ..cuuuiiiieeiiiiiiieereicerreieereeeneeeeeanseeeeenssesennsssssenassssnennssasssnnssssnennssnssennnes 36
Decision Syntax Validationueeeeiiiiieiiiiiiieeeee et 36
D= Y o] o T I 1 =Rt 37
DecCision EXECULION REPOITS.....uuuuiieiii ettt e et s e e e e e e e e aaee e e e e e eeeees 39
[DT=To 1Y o] o T I - [V=Rt 41
RUIES REPOSITOIY SEAICN ..ottt e e e e e e earbraereeeeens 42
CoNSISTENCY CRECKING ...uvvvrieieiie et e e e e e e e e e aarraens 43
Special Decision Model ANAlYZErS.........uueiiei i 44
Advanced DecisSion TADIESeeueeeeeeeeeenieieeiereiiirrieserrieieteiiernessseessesnesessnssessassesnnns 44

20

OpenRules, Inc. OpenRules® User Manual

Specialized Conditions and CoONCIUSIONS.......cccciiiuiiiiiinniiiiiniiiiiniss. 44
Multi-Hit DeciSion TabIesc.ciieiiieeiiiiiiiiiireicreeereeertneeeeneserensereeserensesensessnssesanssssnsesenne 45
DecCisioNTableMUILIHIt.......ccceeeeee e e e e 45
DeCiSiONTabIESEQUENCE ...t e e e e e e eeeaeeas 47
Minimizing the Size of Decision Tablescccceiiiiiiiiiiiiiiiiiin s reseeas 48
Business Rules Defined on Collections of Objects........ccccceiiiiiniiiiieniiniinniinieeniineeen. 49
Decision Tables for Comparing Ranking Listsccccceiieuuiiiiieniiiiieniiniieniinieeiieenes 51
Defining and Using Rule Identification.......cccccieeiiiieiiiieiiiiiiiiicicrccrencrenc e seneesenecseenenenes 52
Spreadsheet Organization and Managementccueueceieerirensisieesissnesossnsssssnsonsns 53
Workbooks, Worksheets, and Tables......cccccoieiiiiiiieniiiiiiiiciereicrecreecernneeeeeserensesensensnnees 53
How OpenRules’ Tables Are RECOZNIZEM.ucevereereererriresseeresessessessessssessessesessessesessessensenees 54
RUIES TADIES.....cccuuueeeeneiiiiiienniiiriiiniiiisieniissiisisisssssnsissssssssssssssssssssssnsssssssssssssssssnsssnns 56
Rules Table EXample........ . iiireiiiieiecceicicerreineeseeeneeseeenseeseensssssenasssssenasssssennsssssennsssssennnes 56
Business and TEChNICAl VIEWSceuuiiieiuiiiieicirieicesreencesecenseseeaneessesassssenansssennssnssennnns 58
How Rules Tables Are Organized..........ccccceeeeeuiiiieeniireeencieneeesieneeaseeesennssessensssessenssssssennnns 59
How Rules Tables Are EXECULEd.........cccceuuiirieeuiirieeniereenneeseensssereeassseneenssessennsssssennsssssennnns 62
Relationships between Rules inside Rules Tables........cccccveeeeeiccciiieeeeeee e, 63
MUI-HIt RUIES TABIES ceeieeeeeeeeee et e e e e e rereee e 63
Rules Overrides in Multi-Hit Rules TablesS........cccoiiiiiiiiiieeiee e, 65
Single-Hit RUIES TaBIESoiiiiiiee e 67
T T =T [V =T o ol YT RT 68
Relationships among Rules Tablesuuvvveeieiiiiiceeeee e 69
Simple AND / OR Conditions in Rules Tables..........c.cccuuieieiiiiieieieieieieieieieeeeeeeeeeeeeseeeeeeeesseseee 69
Horizontal and Vertical Rules TabIescciveeuiiiieiiiriiccereeeccerrreccsrenen e e reee e s s e naneessenanes 70
Y LT =T Y- o= | R 71
Sub-Columns and Sub-Rows for DYNamiC Arrays.......cccccccereeeneeereenneereensersennnsessennssessennnanes 72
Using Expressions inside Rules Tables.........cccuiiieeiiiiiiiiircccrrrcccereeeccsreeeee e s e nene e s eenanes 73
Integer and REaI INTEIVAISuuvvieeeiiee et e e 73
Comparing Integer and Real NUMDBEIS.......coccciiiveeeie e 75
Using Comparison Operators inside Rule Tablescccceeveeeeeicciiiieeeeeeeeeecireeeeeeen, 75
(O0e] 0] o= 1 g1 0T = D - | (T 77
Comparing BOOIEAN VAIUEScocuvivieiiee ettt ettt e e eearaee e e e e e e eaanreees 77
Representing String DOM@iNS oo i i i it e e et eee s e e e e e e e e aanee e e e eeeneees 78
Representing Domains of NUMDErSuvvveiiiiiiiiiiieeeee e 79
USINE JAVA EXPrESSIONS ...iiieeeeiiiiieee e e eeeeetttcee e e e e e e e ettt ese s e e e e s seeasaaaaseeeesseessnnnnaseaeeerenes 80
Expanding and Customizing Predefined TYPesccccvviieeeeei e, 81
Performance ConsSiderations........ccceeiieccciiiiiiiee e e e e 81

30

OpenRules, Inc. OpenRules® User Manual

RUIES T@MIPIALES.......ceeueeeeereeeeeereueerenerenneereeeeenaserenssesenssesessessnssessnsessnssesenssesensssnnsans 81
Simple Rules TemMPIatesccciiiveiiiiiiiiiiiiiiiiiiiiniieeirsssssirsssssiesssssstesssssssesssssssessssssns 82
Defining Rules based on Templates......ccccceiieeiiiiiiniiiiiiiiniieeeses 83

Templates for Single-Hit Rule Tablesooeiiiiiei i 83
Templates for Multi-Hit Rule Tablesccuoveiriiiiei e 84
Partial Template Implementationcccccciiiieiiiiiiiiiiiin e rsssssesseneses 85
Templates with Optional Conditions and Actions...........cccceiiiiiiniiiiiiiiniinin. 87
Templates for the Default Decision Tables.......c..cccivriiiiiiniiiiiiiiiiiieee. 88
LYol T Lo T =T 0 0] o] = €= 88
Decision EXecution TEMPIATES ..uvvveeiiii it rrrree e e 90
Template CUSTOMIZAtIONuuviiiieiei e e e e e e e 91

Data MOdEling..........ccuuceeeuieeeriiieniienniiieeisiniiissnsisisasisssnsessnsssssnsssssssessnssossnsssssassssnnns 92
Datatype and Data Tables.......ccieeiiieeiiiiiiiiiiiiecirieereeertneerrnseerennerenserensesensessnssesnsssssnsenenns 93
How Datatype Tables Are Organizedccccceiieeiiieeiereniiteerineiereniereeerenserenserenssesassessssensnns 96
How Data Tables Are Organizedcccceeeeeeiiieniireeerenniirnnerenssereneressereassssnsessnssesasssssssensnns 98
Predefined DatatyPes ...ccccceiieeiiieeiiiteiiiierreeietteeereenerennerenserenseernssssnsserensssensessnssssnsesensnsnns 100
How to Define Data for Aggregated Datatypesccccveeeireeereenieienieteenerenerennerenseernseeensnenes 102
Finding Data Elements Using Primary Keyscccceuuciriieecirienncerienncereennceseennsseseennsssnenns 102
Cross-References Between Data Tables......c..coiveeeiiiiieeiiiieieiciiiececcerececs s seceneesrenaneessenanes 103

OpenRuIesQ L2 0=T e Yo X1 1] VOO 104
Logical and Physical REPOSItOFiescccuuceriiiuiiriiieierieincereeeneereenneeeseennseeseenssseseennsssnenns 105
Hierarchies of Rule WOrkbooKkscccceuiiiiieiiiiiiccrreiccseennccerenacessennseeseennsneseennsasnenns 106

INCluded WOTrKDOOKSevveeeiiiiie ettt e e e e e eaaaee e 106
Include Path and Common Libraries of Rule Workbookscccccceevciiieiieinennns 107
Using Regular Expressions in the Names of Included Files.........cccceveeeiiiiicnrvenenn.n. 108
IMPOIES FrOM JAVA cevrieiiiiii ettt e e e e e et re e e e e e e e e e s nanraeneeeeens 108
IMPOIES FrOM XML cevveeeeeiiieieceeeeee ettt ettt e e e e e e eeatre e e e e e e e e e s enanraeneeeeens 109
Parameterized Rule RePOSItOries.cccuvuuiiriirunieriiincerreiecereenaeereenneeeeennseeseennssesesnnssnenns 110
Integration with Java ObjJects.......ccuuiiiiieiiiiiiic e s eera e s sena e s eennseseenssnssesnnsnnnenns 111
Integration With XIVIL FIlesoiireeiiiiiiceieiccereiccereneceseenanessenaneseennsassesnssneseennsnnnenns 112
Integration with Relational Databases.......cccccieuiiiieiiiiniiiiiiiiiiiicrerecc e srnee s snenenes 114
Rules Version Controlcieeiiieiiiieiiiiiiiiiniiicicecrencreesessnssstnssssnesssensssensessnssssnssssnnssnes 114
Rules Authoring and Maintenance TOOIScccciiieeiiieniiiieiiiieniiieiereierensereeerenssssnsessnenenes 115

OPCIRUIES APl .ceeeeeeeeeeereeeeereeeeeseeeesesssssssssssssssssatsssssssssssssssssasasessssssssssasessses 116

= 1V 1 0 Lo T ol RN 116

40©

OpenRules, Inc. OpenRules® User Manual

OPENRUIESENGING APl.......ccuuiiiiiiniiiiiinniiiieniiiieneiiiiessiiiessiisiessiesiesssssissssssssesssssssenssss 116
Y o F=qT o [=I O] a3 { (¥ 0] 3RO 116

oY o F=qT [T RO 1PN 118
Undefined Methodsooeeiiiiieecee e rrae e e 119
Accessing Password Protected EXCel Filescouvviieieeiiii e 120
ENgine AttachmeENntscci i e 121

oY o F=q T o [T VLY £ [o PSPPSR 121
DyNamic RUIES UPdates.....ccccuueeiiieiee ettt e e e e e e e e enraee e e e e 121

(D LT o1 LY o] o 1 Yo 122
DECiSION EXAMPIE c.eeieieeei it e e e e e e e e e e 122

D LYol 1 To] T @0 T 0 1) A 8 Lot o] SRR 123
DYoo) T o= [= [T=L (=T O PROPPNE 123

D L=Tof o] o TN 218 o TP 124
D<o 1Y o] T I =) PRSP 125
Executing Decision Methods From EXCelcccccuveiieiiiiiiiieieee e 125
BT Y o] g J € (o 1Y | AR 126
Business Concepts and Decision ObJeCtSccccvveiieriiieiicciiiee e 127
Changing Decision Variables Types between Decision RUNSccccvveeeeeeeeecnnnneen. 128
DecCision EXECULION IMOUESuuvriiiieeeeeieiiiieeeee ettt e e e e e e trrre e e e e e e e e s eanraeeeeeeens 129
Frequently Used Decision Methods.........ccueviiiiiiiiiiniiiie e 129
Generating Excel Files with new Decision Tables........ccccccoreeeiiiiieriiiriccciirerccrreeece e eenane. 130
Example With EXplanationsceeoiiiiiiicieec sttt e e e 131
Formal DeciSioNBOOK APuuviiiieeeeeeecteeeee ettt ee e e e e e s eanraeeeee e 133
LOBEING APl ceeiiieiiiiiiieiiiricienereni e senestnessssesssensssenssssnssssnssssnssssensssenssssnssssnssssnnssnen 134
JSR-94 IMPIementation........cccceuiiiieiieiiiiiceeireeceesreaeeeseenneeseeassessennssessesnssessennssessennnnanee 134
IV ITL LA T =T e [T - 2T 135
[0 1274 [0}V 17 T=1 1 | OIS 136
Embedding OpenRules in Java Applications..........ccccerieeuiirieinieriennccereeencereenneeseennseenenas 136
Deploying Rules as Web ServiCes.......ccccuuiiiiieuieriiincerieincereennneereennsseseennsseseensssessenssseneens 137
Deploying Rules and Forms as Web Applicationsc.cccecerieiiieiieencenieenceneeeneceseennnceneens 137
Generating Java Interfaces for Excel-based Decision Models.......cc.ccceeeeucirreencirreenncirnena.. 138
GeNErating JAva ClaSSesuuiiiiiiiciiiiiiee et e e e e e e e e e e e e e e nnreeees 138
Using Generated Business Maps as a Decision Model Interface.........cccoeeeuvveeenn.n. 142
Accessing Excel Data from Java - Dynamic ObjJects........ccceuuceiiemniciiiennieineenniereeennessennnenns 146
EXEEINAI RUIScueeeeeeeeeeeeeeeeeeeeeeiieeeieseiiseseesesescnseseassssesssssessssnsssssnssessassnsnannnes 148
0penRuIes® PrOJECES .ccuueveeeeeereerenerereueerenserenseeesesesenssesenssessasessnsssssnssssnssesenssesensssnnns 149
Pre-ReqUISITES cccuiiieeiiiiiiiciiiiiiieiiieiirteerreeestneereeerenssseasessassssnssssnssssensssensessnssssnssssnnssnen 149
T 1001 o (=l o [T o1 £ 149

50

OpenRules, Inc. OpenRules® User Manual

Main Configuration Project..........ccceiiiiiiuiiiiiiniiniiniiniiniiimeiessesssen 149

Y U] oY oo g a1 7= W1 o =Y [=- USRS 150
Predefined Types and TemMPIates......coeiieciieei it 151
TECHNICAI SUPPOITeuueeeeeriiiniiiiinriiieiiiiinsisieesisisiisssnsisssnissssssssnsisssssossssssssnsssssasans 151

6©

OpenRules, Inc. OpenRules® User Manual

INTRODUCTION

OpenRules® was developed in 2003 by OpenRules, Inc. as an open source
Business Rules Management System (BRMS) and since then has become one of
the most popular Business Rules products on the market. Over these years
OpenRules® has been naturally transformed in a Business Rules and Decision
Management System (BRDMS) with proven records of delivering and
maintaining reliable decision support software. OpenRules® is a winner of
several software awards for innovation and is used worldwide by multi-billion
dollar corporations, major banks, insurers, health care providers, government
agencies, online stores, universities, and many other institutions.

Brief History

From the very beginning, OpenRules® was oriented to subject matter experts
(business analysts) allowing them to work in concert with software developers to
create, maintain, and efficiently execute business logic presented in enterprise-
class rules repositories. OpenRules® avoided the introduction of yet another “rule
language” as well as another proprietary rules management GUI. Instead,
OpenRules® relied on commonly used tools such as MS Excel, Google Docs and
Eclipse integrated with the standard Java. Using OpenRules® formats business
users can represent and test their decision models directly in Excel with minimal
of no coding. This approach enabled OpenRules users to create and maintain
inter-related decision models in accordance with the latest decision modeling
standards.

OpenRules from the very beginning supported two views of its decision tables:
Business View in which business people may express business rules using
business terms only
Technical View (usually hidden) in which technical people could place Java
snippets to specify the exact semantics of rule conditions and actions.

Then in March of 2008, OpenRules® Release 5 introduced Rule Templates.
Templates allowed a business analyst to create hundreds and thousands of
business rules based on a small number of templates supported by software
developers. Rule templates minimized the use of Java snippets and hid them
from business users. Rule templates were a significant step in minimizing rule
repositories and clearly separating the roles of business analysts and software
specialists in maintaining the rules.

In March of 2011 OpenRules® introduced Release 6, which finally moved control
over business logic to business users. OpenRules® 6 effectively removed any
Java coding from rules representation allowing business analysts themselves to
specify their decisions and supporting decision tables directly and completely in
Excel. OpenRules® Decision Modeling approach is based on a set of the
decisioning templates that represent the latest standardization efforts and

70

http://www.openrules.com/
http://www.openrules.com/ReleaseNotes_5.0.htm
http://www.openrules.com/RuleTemplates.htm
http://www.openrules.com/ReleaseNotes_6.0.htm

OpenRules, Inc. OpenRules® User Manual

organized in easily customized Excel tables. Along with various decision tables,
business users can also create business glossaries and test cases as Excel tables.
They may then test the accuracy and execute their decision models without the
need for coding at all. Since introduction of OMG “Decision Model and Notation”
(DMN) in 2013, OpenRules® provides it’s the most complete support of the
standard demonstrating on many practical DMN examples.

Once a decision has been tested it can be easily incorporated into any Java or
.NET environment. This process may involve IT specialists but only to integrate

the business glossary with a specific business object model. The business logic
remains the complete prerogative of subject matter experts.

OpenRules® Components

OpenRules® offers the following decision management components:

e Rule Repository for management of enterprise-level decision rules

e Rule Engine for execution of decisions and different business rules

¢ Rule Dialog for building rules-based Web questionnaires

e Rule Learner for rules discovery and predictive analytics

e Rule Solver for solving constraint satisfaction and optimization problems

e Finite State Machines for event processing and “connecting the dots”.

Integration of these components with executable decisions provides OpenRules®
customer with a general purpose BRDMS, Business Rules and Decision
Management System, oriented to “decision-centric” application development with

externalized business logic.

OpenRules, Inc. 1s a professional open source company that provides software,

product documentation and technical support and other services that are highly
praised by our customers. You may start learning about product with the

document “Getting Started” which describes how to install OpenRules® and

includes simple examples. Then you may look at a more complex example in the

tutorial “Calculating Tax Return”. This user manual covers the core OpenRules®

concepts in greater depth. Additional OpenRules® components are described in

separate user manuals: see Rule Learner, Rule Solver, and Rule Dialog. Many

8©

http://www.openrules.com/RuleRepository.htm
http://www.openrules.com/RuleEngine.htm
http://www.openrules.com/ORD.htm
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/StateMachines.htm
http://openrules.com/company.htm
http://openrules.com/services.htm
http://openrules.com/what_they_say.htm
http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Tutorial.Decision1040EZ.pdf
http://openrules.com/rulelearner.htm
http://openrules.com/rulesolver.htm
http://openrules.com/ord.htm

OpenRules, Inc. OpenRules® User Manual

other helpful documents and tutorials can be found online at the Documentation

page of www.openrules.com.

Document Conventions

The regular Century Schoolbook font is used for descriptive information.
The 1talic Century Schoolbook font is used for notes and fragments
clarifying the text.

The Courier New font is used for code examples.

CORE CONCEPTS

OpenRules® is a general purpose BRDMS that allows customers to develop their
own custom Business Decision Management Systems. OpenRules® utilizes the
well-established spreadsheet concepts of workbooks, worksheets, and tables to
build enterprise-level rule repositories. Each OpenRules® workbook is comprised
of one or more worksheets that can be used to separate information by types or

categories.

To create and edit rules and other tables presented in Excel-files you can use any

standard spreadsheet editor such as:

e MS Excel™
e Google Docs™

e OpenOffice™

Google Docs™ is especially useful for collaborative rules management.

OpenRules® supports different types of spreadsheets that are defined by their
keywords. Here is the list of OpenRules® tables along with brief description of

each:

90

http://openrules.com/documentation.htm
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets

OpenRules, Inc.

OpenRules® User Manual

Decision

Defines a decision that may consist of multiple
sub-decisions associated with different decision
tables

Decision Table or DT or
DecisionTableSingleHit or

This is a single-hit decision table that uses
multiple conditions defined on different
variables to reach conclusions about the

RuleFamily decision variables

For each decision variable used in the decision

Glossar tables, the glossary defines felated busin_ess

~2l08SaLy concepts, as well as related implementation
attributes and their possible domain
Associates business concepts specified in the

DecisionObject glossary yvith concrete objepts defined outside
the decision (i.e. as Java objects or Excel Data
tables)
Defines a decision table that includes Java
snippets that specify custom logic for
Rules conditions and actions. Read more. Some Rules

tables may refer to templates that hide those
Java snippets.

Datat Defines a new data type directly in Excel that

—atalype can be used for testing

Data Creates an array of test objects
Variable Creates one test object
DecisionTableTest Defines test cases with expected results
This table defines the structure of a rules
Environment repository by listing all included workbooks,

XML files, and Java packages

Method Defines expressions using snippets of Java

code and known decision variables and objects

DecisionTablel or DT1 or
DecisionTableMultiHit

A multi-hit decision table that allows rule
overrides

DecisionTable2 or DT2 or
DecisionTableSequence

A multi-hit decision table that like
DecisionTable2 executes all rules in top-down
order but results of the execution of previous
rules may affect the conditions of rules that
follow

Layout

A special table type used by OpenRules®
Forms and OpenRules® Dialog

The following section will provide a detailed description of the major decsioning
concepts.

DECISION MODELING AND EXECUTION

100

http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/pdf/OpenRulesDialog.pdf

OpenRules, Inc. OpenRules® User Manual

OpenRules® methodological approach allows business analysts to develop their
executable decisions with underlying decision tables without (or only with a
limited) help from software developers. You may become familiar with the major
decision modeling concepts from simple examples provided in the document

“Getting Started” and several associated tutorials. First we will consider the

simple implementation options for decision modeling, and later on we will

describe more advanced OpenRules® concepts.

Starting with Decision

From the OpenRules® perspective a decision contains:

a set of decision variables that can take specific values from domains of
values
a set of decision rules (frequently expressed as decision tables) that

specify relationships between decision variables.

Some decision variables are known (decision input) and some of them are
unknown (decision output). A decision may consist of other decisions (sub-
decisions). To execute a decision means to assign values to unknown decision
variables in such a way that satisfies the decision rules. This approach
corresponds to the OMG standard known as “DMN” (Decision Model and
Notation).

OpenRules® applies a top-down approach to decision modeling. This means that
you usually start with the definition of a Decision and not with rules or data.
Only then you will define decision tables and then put related variables into a
glossary. After you define a top-level decision, you may want to specify test data
wit expected results even before you specify the actual decision logic. Here is an

example of a Decision:

110

http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/documentation.htm
http://openrules.com/dmn_primer.htm

OpenRules, Inc.

Decision DeterminePatientTherapy

Decisions

OpenRules® User Manual

Execute Decision Tables

Define Medication

DefineMedication

Define Creatinine Clearance

CalculateCreatinineClearance

Define Dosing

DefineDosing

Check Drug Interaction

WarnAboutDruginteraction

The decision “DeterminePatientTherapy” consists of four sub-decisions:

e “Define Medication” that is implemented using a decision table

“DefineMedication”

e “Define Creatinine Clearance” that is implemented using a decision table

“DefineCreatinineClearance”

e “Define Dosing” that is implemented using a decision table

“DefineDosing”

e “Check Drug Interaction” that is implemented using a decision table

“WarnAboutDruglnteraction”.

The table “Decision” has two columns “Decisions” and “Execute Decision Tables”

(those are not keywords and you can use any other titles for these columns). The

first column contains the names of all our sub-decisions - here we can use any

combinations of words as decision names. The second column contains exact

names of decision tables that implement these sub-decisions. The decision table

names cannot contain spaces or special characters (except for “underscore”).

OpenRules® allows you to use multiple (embedded) tables of the type “Decision”

to define more complex decisions. For example, a top-level decision, that defines

the main decision variable, may be defined through several sub-decisions about

related variables:

Decision DecisionMain

Decisions

Execute Rules / Sub-Decisions

Define Variable 1

DecisionTableVariablel

Define Variable 2

DecisionTableVariable21

12©

OpenRules, Inc.

Define Variable 2

DecisionTableVariable22

OpenRules® User Manual

Define Variable 3

DecisionVariable3

Define Variable 4

DecisionTableVariable4

In order to Define Variable 2 it is necessary to execute two decision tables. Some

decisions, like "Define Variable 3", may require their own separate sub-decisions

such as described in the following table:

Decision DecisionVariable3

Decisions

Execute Rules

Define Variable 3.1

DecisionTableVariable31

Define Variable 3.2

DecisionTableVariable32

Define Variable 3.3

DecisionTableVariable33

These tables can be kept in different files and can be considered as building

blocks for your decisions. This top-down approach with Decision Tables and

dependencies between them allows you to represent quite complex decision logic

in an intuitive, easy to understand way.

Some decisions may have a more complex structure than the just described

sequence of sub-decisions. You can even use conditions inside decision tables. For

example, consider a situation when the first sub-decision validates your data and

a second sub-decision executes complex calculations but only if the preceding

validation was successful. Here is an example of such a decision from the tax

calculation tutorial:

Decision Apply1040EZ
Condition ActionPrint ActionExecute
1040EZ Eligible Decisions Execute
Validate ValidateTaxReturn
Is TRUE Calculate DetermineTaxReturn
Is FALSE Do Mot Calculate

13©

http://openrules.com/pdf/Decision1040EZ.pdf

OpenRules, Inc. OpenRules® User Manual

Since this table “Decision Apply1040EZ” uses an optional column “Condition”, we
have to add a second row. The keywords “Condition”, “ActionPrint”, and
“ActionExecute” are defined 1in the standard OpenRules® template
“DecisionTemplate” — see the configuration file “DecisionTemplates.xls” in the
folder “openrules.config”. This table uses a decision variable “1040EZ Eligible”
that is defined by the first (unconditional) sub-decision “Validate”. We assume
that the decision “ValidateTaxReturn” should set this decision variable to TRUE
or FALSE. Then the second sub-decision “Calculate” will be executed only when
“1040EZ Eligible” is TRUE. When it is FALSE, this decision, “Apply1040EZ”,
will simply print “Do Not Calculate”. In our example the reason will be printed

by the decision table “ValidateTaxReturn”.

Note. You may use many conditions of the type “Condition” defined on different
decision variables. Similarly, you may use an optional condition “ConditionAny”
which instead of decision variables can use any formulas defined on any known
objects. It is also possible to add custom actions using an optional action

“ActionAny” — see “DecisionTemplates.xls” in the folder “openrules.config”.

When you have completed defining all decision and sub-decisions, you may define

your decision logic in various decision tables.

Defining Decision Tables

OpenRules® decision modeling approach utilizes the classical decision tables that
were in the heart of OpenRules® from its introduction in 2003. OpenRules® uses
the keyword “Rules” to represent different types of classical decision tables.
Rules tables rely on Java snippets to specify execution logic of multiple
conditions and actions — see below. However, since the version 6 OpenRules®
customers mainly use a special type of decision tables with the keyword

“DecisionTable” (or “DT”) that do not require Java snippets and rely on the

14©

OpenRules, Inc.

OpenRules® User Manual

predefined templates for various conditions and conclusions. For example, let’s

consider a very simple decision “DetermineCustomerGreeting”

Decision DetermineCustomerGreeting

Decisions

Execute Rules

Define Greeting Word

DefineGreeting

Define Salutation Word

DefineSalutation

It refers to two decision tables. Here is an example of the first decision table:

DecisionTable DefineGreeting |

Condition Condition Conclusion
Current Hour Current Hour Greeting
>= 0 <= 11 Is Good Morning
>= 11 <= 17 Is Good Afternoon
>= 17 <= 22 Is Good Evening
>= 22 <= 24 Is Good Night

Its first row contains a keyword “DecisionTable” and a unique name (no spaces

allowed). The second row uses keywords “Condition” and “Conclusion” to specify

the types of the decision table columns. The third row contains decision variables

expressed in plain English (spaces are allowed but the variable names should be

unique).

The columns of a decision table define conditions and conclusions using different

operators and operands appropriate to the decision variable specified in the

column headings. The rows of a decision table specify multiple rules. For

instance, in the above decision table “DefineGreeting” the second rule can be

read as:

“IF Current Hour is more than or equal to 11 AND Current Hour is less
than or equal to 17 THEN Greeting is Good Afternoon ”.

150

OpenRules, Inc. OpenRules® User Manual

Similarly, we may define the second decision table “DefineSalutation” that
determines a salutation word (it uses the keyword “DT” that is a synonym for

“DecisionTable”):

DT DefineSalutation |

Condition Condition Conclusion

Gender Marital Status Salutation
Is Male Is Mr.
Is Female | Is Married Is Mrs.
Is Female | Is Single Is Ms.

If some cells in the rule conditions are empty, it is assumed that this condition is
satisfied. A decision table may have no conditions but it always should contain

at least one conclusion.

Decision Table Execution Logic

By default, OpenRules® executes all rules within DecisionTable in a top-down
order. When all conditions inside one rule (row) are satisfied the proper
conclusion(s) from the same row will be executed, and all other rules will be
ignored. At the same time, OpenRules® supports other types of decision tables

specified in the OMG standard DMN.

Note. OpenRules® decision tables can also be used to implement a
methodological approach known as “I'DM” and described in the book “The

Decision Model”. It relies on a special type of decision tables called “Rule

Families” that require that the order of rules inside a decision table should not
matter. It means that to comply with the Decision Model principles, you should
not rely on the default top-down rules execution order of OpenRules® decision
tables. Instead, you should design your decision table (you even may use the
keyword “RuleFamily” instead of “DT”) in such a way that all rules are mutually
exclusive and cover all possible combinations of conditions. The advantage of this
approach is that when you decide to add new rules to your rule family you may

place them in any rows without jeopardizing the execution logic. However, in

16 ©

http://www.omg.org/spec/DMN/1.0/Alpha/PDF/
http://www.kpiusa.com/index.php?option=com_content&view=article&id=22&Itemid=8
http://www.kpiusa.com/index.php?option=com_content&view=article&id=22&Itemid=8

OpenRules, Inc. OpenRules® User Manual
some cases, this approach may lead to much more complex organization of rule

families to compare with the standard decision tables.

AND/OR Conditions

The conditions in a decision table are always connected by a logical operator
“AND”. When you need to use “OR”, you may add another rule (row) that is an
alternative to the previous rule(s). However, some conditions may have a

decision variable defined as an array, and within such array-conditions “ORs”
Y, y

are allowed. Consider for example the following, more complex decision table:

Here the decision variables “Customer Profile”, “Customer Product”,

= One o Do Not Sevng Account, DebUATM Care
ot New Bronze Saver {include Checlong Account nckude Saving Account Are Web Banking
CO with 25 besia point CD with 25 basis point ncraase
"g;" New Bronze Saver |lnckide (f"::": ;‘;’f"“"‘ ::A:‘:: ncrease, Noney Market Matual| Are | Money Market Mutual Fund. Crect
kb . Fund, Credt Card Card
CO wth 25 dasss point CD with 20 basis pont ncrease.
.g:. Now, Bronze Sever |nchude ¢ '::;m‘ Saving :::::: ncrease. Honey Market Watual | Are | Money Markel Mutual Fund, Creat
Fund, Credt Carg Caett, DebAIATM Card, Yab Baring
CD with 50 basis pont ncrease
D with 25 basis point =z ~rirge
%0on Cod cde| Chesmgaccout | DMt | orense Maney Market Mutuai| are | MooeY Market Uutual Fund, Credt Ooid Package
o1 hclde Fusd, Web Bantn Card, DebUATM Card, Web
\d Banking, Brolarage Acsaunt
CD with 50 bass pont Nesease.
CD win 25 boss pont Money Market Nutusi Fund, Creca
"g:" Patnus nclide cmmg:.:m Savng :" c::: ncrease Noney Market Metual| Are | Carg with no anoual tee, Debt/aTM | Patnem Paciage
Fusd, Web Santing Card, Web Banking weh no charge,
kAT A i
Are Nooe Sorry

and

“Offered Products” are arrays of strings. In this case, the second rule can be read

as:

IF Customer Profile Is One Of New or Bronze or Silver
AND Customer Products Include Checking Account and

Overdraft Protection

AND Customer Products Do Not Include CD with 25 basis point

increase,

Money Market Mutual Fund,

and Credit Card

THEN Offered Products ARE CD with 25 basis point increase,

Money Market Mutual Fund,

Decision Table Operators

and Credit Card

17©

OpenRules, Inc.

OpenRules® User

Manual

OpenRules® supports multiple ways to define operators within decision table

conditions and conclusions. When you use a text form of operators you can freely

use upper and lower cases and spaces. The following operators can be used inside

decision table conditions:

When you use “=" or “=="
inside Excel write”’=" or’”’=="
Is =, == with apostrophe to avoid
confusion with Excel’s own
formulas
Is Not =, Isnoé’quall\.l,otNE?LIIE?:u-;?ll'lzmt, Not Defines an inequality operator
- Is More, More, Is More Than, Is For integers and real numbers,
Greater, Greater, Is Greater Than and Dates
Is More Or Equal. Is More Or Equal For integers and real numbers,
o To, Is More Than Or Equal To, Is and Dates
Greater Or Equal To, Is Greater Than
Or Equal To
Is Less Or Equal, Is Less Than Or For integers and real numbers,
Equal To, Is Less Than Or Equal To, Is | and Dates
<= Smaller Or Equal To, Is Smaller Than
Or Equal To, Is Smaller Than Or Equal
To,
< Is Less, Less, Is Less Than, Is Smaller, | For integers and real numbers,
Smaller, Is Smaller Than and Dates
Is True For booleans
Is False For booleans
A string is considered “empty”
Is Empty if it is either “null” or contains
only zero or more whitespaces
For strings only, e.g. “House”
. . contains “use”. The
Contains Contain comparison is not case-
sensitive
For strings only, e.g. “House”
Does N.Ot DoesNotContain does no_t con_tain “user”. The
Contain comparison is not case-
sensitive
For strings only, e.g. “House”
Sta_rts Start with, Start starts w.ith “ho”. The
With comparison is not case-
sensitive
Match Matches, Is Like, Like Compares if the s'.tring matches
a regular expression
No NotMatch, Does Not Match, Not Like, | Compares if a string does not
Match Is Not Like, Different, Different From | match a regular expression

18©

OpenRules, Inc.

OpenRules® User Manual

Within

Inside, Inside Interval, Interval

For integers and real numbers.

The interval can be defined as:
[0;9], (1;20], 5-10, between 5

and 10, more than 5 and less or
equals 10 — see more

Outside

Outside Interval

Opposite to “Within”: checks
if an integer or real value is
outside of the provided interval

Is One Of

Is One, Is One of Many, Is Among,
Among

For integer and real numbers,
and for strings. Checks if a
value is among elements of the
domain of values listed
through comma

Is Not
One Of

Is not among, Not among

For integer and real numbers,
and for strings. Checks if a
value is NOT among elements
of the domain of values listed
through comma

Include

Include All

To compare two arrays.
Returns true when the first
array (decision variable)
include all elements of the
second array (value within
decision table cell)

Exclude

Exclude One Of, Do Not Include, Does
Not Include, Include Not All

To compare two arrays.
Returns true when the first
array (decision variable) does
not include all elements of the
second array (value within
decision table cell). This
operator is opposite to the
operator “Include”

Exclude
All

Do Not Include All, Does Not Include
All

To compare two arrays.
Returns true when the first
array (decision variable) does
not include any element of the
second array (value within
decision table cell)

Intersect

Intersect With, Intersects

To compare an array with an
array

If the decision variables do not have an expected type for a particular operator,

the proper syntax error will be diagnosed.

Note that the operators Is One Of, Is Not One Of, Include, Exclude, and Does Not

Include work with arrays of values separated by commas. Sometimes a comma

could be a part of the value and you may want to use a different separator. In

190

OpenRules, Inc. OpenRules® User Manual

this case you may simply add your separator character at the end of the operator.
For example, if you want to check that your variable “Address” is if one of “San
Jose, CA’ or “Fort Lauderdale, FI’, you may use the operator “Is One Of #” with
an array of possible addresses described as “San Jose, CA#Fort Lauterdale, FL.

Instead of the character # you may use any other character-separator.

The following operators can be used inside decision table conclusions:

Assigns one value to the conclusion
decision variable. When you use “=" or

Is =, == “==" inside Excel write”’=" or’’==""to
avoid confusion with Excel’s own
formulas.

Assigns one or more values listed
Are through commas to the conclusion

variable that is expected to be an array
Adds one or more values listed through
Add commas to the conclusion variable that is
expected to be an array

Takes the conclusion decision variable,

Assign . adds to it a value from the rule cell, and
Plus saves the result in the same decision
variable.
Takes the conclusion decision variable,
Assign _ subtracts from it a value from the rule
Minus - cell, and saves the result in the same
decision variable.
Takes the conclusion decision variable,
Assign o multiplies it by a value from the rule cell,
Multiply B and saves the result in the same decision
variable.
Takes the conclusion decision variable,
Assign /= divides it by a value from the rule cell,
Divide and saves the result in the same decision

variable.

Note that for the operators Add and Are that work with arrays of values
separated by commas, you may add your own character-separator at the end of

the operator to use it in cases when values inside array contain commas.

Conditions and Conclusions without Operators

200

OpenRules, Inc. OpenRules® User Manual

Sometimes the creation of special columns for operators seems unnecessary,
especially for the operators “Is” and “Within”. OpenRules® allows you to use a

simpler format as in this decision table:

DT DefineGreeting |

If Then
C:_J'glfrm Greeting
0-11 Good Morning
11-17 Good Afternoon
17-22 Good Evening
22-24 Good Night

As you can see, instead of keywords “Condition” and “Conclusion” we use the
keywords “If” and “Then” respectively. While this decision table looks much
simpler in comparison with the functionally identical decision table defined
above, we need to make an implicit assumption that the lower and upper bounds

for the intervals “0-117, “11-17”, ete. are included.

Expressions Inside Decision Tables
OpenRules® allows you to use expressions (formulas) in the decision table cells.
There are two types of expressions:

1) OpenRules Java Snippet Expressions with Macros
2) DMN FEEL Expressions

OpenRules from the very beginning allows its users to write any arithmetic
and logical expressions directly in the decision table cells. Such should be
written as syntactically correct Java snippets even if a user does not now Java.
To simplify the references to decision variables inside such expressions we
introduced special macros. This is a preferred, the most powerful efficient way

to write expressions. However, the DMN standard introduced a special

Friendly Enough Expression Language (FEEL) that looks very close
OpenRules Java snippets. However, DMN FEEL essentially simplifies the

expressions not requiring starting expressions with special characters like :=

21©

http://www.omg.org/spec/DMN/Current/

OpenRules, Inc. OpenRules® User Manual

and even allowing spaces in the decision variable names. Since the release
6.4.0 OpenRules supports both Java Snippets and DMN FEEL. Below we will

describe both expression languages.

OpenRules Expressions as Java Snippets

The following example shows how to concatenate variables “Greeting”,

“Salutation”, and a customer’s name to define a result of your greeting decision:

DecisionTable DefineResult

Conclusion
Result

Is = ${Greeting} + ", " + ${Salutation} + customer(decision).nama + "I"

In this expression ${Greeting} and ${Salutation} are so called “macros” that refer
to the already calculated values of the decision variables “Greeting” and
“Salutation”; the method customer(decision) defined in Excel returns the object

Customer whose name will be added to the Result.

In general, the expressions can be presented in one of the following formats:

1 1= expression Or := expression

where “expression” can be written using standard Java expressions and macros
for decision variables. Typically you use expressions with preceding “:=" in
conditions that expect a text expression (the standard Java type String). When it
is necessary to return other types (such a int, double, or Date) the expression

may be preceded by “:=” (with only 1 semicolon).

Note. Actually :=expression simply surrounds :=expression with brackets and

concatenates it with an empty String as below:
‘= " 4+ (expression)
Using Macros in OpenRules Expressions

220

OpenRules, Inc.

OpenRules® User Manual

Below is the list of currently available macros that can be used inside Java

snippets within Excel tables of the type "Decision", "DecisionTable”, and

"Method":

Variable

Macro Format Expanded As
Type

$ivariable name} String decision.getString("variable name")
$Iivariable name} Integer decision.getInt("variable name")
$Rivariable name} Real decision.getReal("variable name")
$Li{variable name} Long decision.getLong(“variable name”)
$Divariable name} Date decision.getDate("variable name")
$B{variable name} Boolean decision.getBool("variable name")
$Givariable name} BigDecimal | decision.getBigDecimal("variable name")
$Ginumber} BigDecimal | new BigDecimal(number)

) getVar(decision,"variable name")
$Vivariable name} Var

- used by Rule Solver

)) ((ObjectName)decision.getBusinessObjec

$0{ObjectName} Object

t(“ObjectName”))

The character after $ indicates the variable type following the variable name in

curly brackets. The name like ${variable name} is used for String variables. The

following example uses macros for real and integer decision variables:

DecisionTable CalculateTotalPayments

Conclusion

Total Payments

Is | == $R{Tax Withheld} + $R{Earned Income Credit} + $l{Extra}

Inside the expressions you may use any operator "+", "-" "¥" "/" "%" and any

other valid Java operator. You may freely use parentheses to define a desired

execution order. You also may use any standard or 3rd party Java methods and
functions, e.g. ::= Math.min($R{Line A}, $R{Line B}).

If the content of the decision table cell contains only a value of the text variable,

say "Customer Location", then along with ::= ${Customer Location} you may also

write $Customer Location even without = and {..}. In the following table

230

OpenRules, Inc.

OpenRules® User Manual

DT DefineWhomToCharge

Condition Condition Conclusion
Vendor Provider Charged Entity
ls Empty | FALSE Is $Vendor
ls Empty TRELUE Is LM OV
Is Mot | ABC, KLM, .
One Of Y7 Is SProvider

the conclusion-column contains references $Vendor and $Provider to the values

of decision variables Vendor and Provider. You may also use similar references

inside arrays. For example, to express a condition that a Vendor should not be

among providers, you may use the operator “Is Not One Of’” with an array “ABC,

$Vendor, XYZ”.

The macro $0{ObjectName} is used when you need to refer to an object

"ObjectName" which corresponds to as a business concept inside the glossary.

If you use this macro, make sure that "ObjectName" is specified exactly as the

proper Java class or Excel Datatype - no spaces allowed. Here is an example from

the sample project "DecisionHello":

DecisionTable DefineResult

Conclusion

Result

Is = ${Greeting} + ", " + ${Salutation} + $O0{Customer}.name + "I"

Dealing with String Variables

This release allows you to use names of String variables inside decision table

cells. If the content of the cell is a valid name of the string variable, it will be

replaced by its value. We do not yet support string concatenation operation - in

this case you need to use regular OpenRules string expressions, e.g.
= ${Greeting} + " " + %tSalutation} + ", " + $O{Customerf.name

Dealing with Date Variables

OpenRules naturally supports date comparison like in the following example:

24©

OpenRules, Inc. OpenRules® User Manual

Condition Action

Date of Birth Is Child

< January 1, 2010 FALSE
>= January 1, 2010 TRUE

However, to define a number of years, months, or days between dates, you still
need to use regular OpenRules expressions (Java snippets). For convenience,
we added a new Java class "Dates" to "com.openrules.tools". It includes static
methods to calculate a number of years, months, and days between two dates,
e.g. you may write the following code inside a condition cell of your decision
table:
= Dates.years($D{Datel}, $D{Date2}) >= 2

It checks that a number of years passed between the variables "Datel" and
"Date2" is at least 2 years. Or you may calculate the age of the person from its

birthday as follows:

DecisionTable DefineAge

Action
Age
= Dates.yearsToday($D{Date of Birth})

You may similarly use methods
Dates.months(Date d1, Date2 d2)
Dates.monthsToday(Date date)
Dates.days(Date d1, Date d2)
Dates.daysToday(Date d).
Don't forget to add to your Environment table an "import.java" statement that

points to "com.openrules.tools.Dates".
Using Big Decimals

Starting with this release 6.3.4 OpenRules® supports a new type "BigDecimal"
inside OpenRules formulas, macros, and expressions. It allows a user to deal
with calculations that require a high degree of precision (much higher than
regular real numbers), such as when dealing with currency conversion, taxes

or even high accuracy mathematical calculation.

250

OpenRules, Inc. OpenRules® User Manual

The variables of the type BigDecimal may correspond (in the Glossary) to Java
object attributes of the standard Java type java.math.BigDecimal As
described in the above table, you may use the macro $G{variable name} to
refer to the value of the “variable name” of the type BigDecimal. Here the
letter "G" stands for "Giant" or "BIG" (note that $B is used for Booleans). For
example, you may define decision variables Cost and Rate with expected type
BigDecimal in your glossary, and then use them in formulas inside decision

table cells like in the following example:
:i= $G{Cost}.divide($G{Rate})

Here the operator "divide" is the standard Java BigDecimal method. If you

want to specify a precision, you even may write
::= $G1Cost}.divide($GiRatef, MathContext. DECIMAL128)

You may use BigDecimal constants inside BigDecimal expressions by writing
$Ginumber}. For example, to present a real number 15.75 as a BigDecimal you
may simply write $G{15.75}. You use such BigDecimal constants inside

BigDecimal operations like below:
= $G1iTotal Tax}.divide($G{15.75})

Internally OpenRules® will replace this expression with the following valid

Java expression:

::= decision.getBigDecimal(“Total Tax”).divide(new BigDecimal(15.75),
MathContext. DECIMAL128)

Note. You may also use negative BigDecimals like $G{-100.25}. However,
instead of $G{+100} you should simply write $G{100}.

Using Regular Expressions in Decision Table Conditions

OpenRules® allows you to use standard regular expressions. Operators "Match"

and "No Match" (and their synonyms from the above table) allow you to match

26 ©

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum

OpenRules, Inc. OpenRules® User Manual

the content of your text decision variables with custom patterns such as phone
number or Social Security Number (SSN). Here is an example of a decision table

that validates SSN:

DecisionTable testSSN

Condition Message
SSN Message
No .
Match \d{3}-\d{2}-\d{4} Invalid SSN
Match \d{3}-\d{2}-\d{4} Valid SSN

The use of this decision table is described in the sample project

“DecisionHelloJava”.

DMN FEEL Expressions

OpenRules also supports the DMN FEEL expression language, at least its
essential functionality that’s sometimes is not different from the default

OpenRules expressions. For example, the following single-hit decision table

DecisionTable DefineGreeting
I3 Then
Current Hour Greeting
[0..11) Good Morning
[11..17) Good Afternoon
[17..22) Good Evening
[22..24) Good Night

already uses FEEL-compliant numerical intervals, to which the variable
"Current Hour" may belong. Actually, OpenRules can handle any Java
snippets including external Java methods and functions. However, our
expressions in Excel-based decision table cells usually start with a special

ne—_mn

formula indicator in conditions or with "::=" in actions. To refer to decision
variables inside formulas we ask our customers to use macros such as $R{real-
variable-name} or $Iiinteger-variable-namej like in our Decision1040EZ

example:

270

OpenRules, Inc. OpenRules® User Manual

DecisionTable CalculateAdjustedGrossincome

Action
AdjustedGrossincome

= 3R{Wages} + SR{Taxablelnterest} + SR{UnemploymentCompensation}

Starting with the release 6.4.0, you may write the same formula in a much

simpler way as specified by DMN FEEL language:

DecisionTable CalculateAdjustedGrossincome

Action
AdjustedGrossincome

Wages + Taxablelnterest + UnemploymentCompensation

As you can see, you do not have to use the "::=" and macros when you use
FEEL.
The current implementation allows a user to use both traditional OpenRules

expressions and DMN FEEL expressions.

Using Names with Spaces

DMN FEEL allows a user to freely use names with spaces inside its
expression. Of course, users may use "underscores" instead of spaces between
words like Patient_Creatinine_Level or PatientCreatinineLevel. However, we
did not want to diminish FEEL "friendliness" and allowed our user to use
variable names with spaces inside FEEL expressions. So, the release 6.4.0
allows you to write expressions similar the one from our Patient Therapy

example:

DecisionTable CalculateCreatinineClearance

Action
Patient Creatinine Clearance

(140 - Patient Age) * Patient Weight / (Patient Creatinine Level * 72)

If a user prefers to explicitly specify that a combination of words separated by
spaces is a variable name, she may surround such names with apostrophes

like in the example below:

280©

OpenRules, Inc. OpenRules® User Manual

DecisionTable CalculateCreatinineClearance
Action

Patient Creatinine Clearance
(140 - 'Patient Age’) * 'Patient Weight' / (Patient’s Creatinine Level * 72)

Note that variable name may include apostrophes like 'Patient's Creatinine
Level' above and OpenRules is capable to handle such names inside FEEL
formulas without any additional indicators. However, if the name contains

* a user need to surround the

special characters like valid operators - or
variable name with apostrophes to avoid a possible confusion.
Instead of apostrophes a user may define other symbols, e.g. $, & or #, by

calling the following code just before executing the proper decision:
decision.put("LONG_NAME _INDICATOR", "$");

Note. In Excel the very first apostrophe in the cell is used as an indicator that
the next character doesn't start an Excel's own formula. So, if your FEEL's
formula starts with Jong variable name’, you need to double the first

apostrophe: "long variable name'.

Turning FEEL Processing On/Off

Processing of FEEL expressions is done during the decision execution and may
be less efficient to compare with the standard OpenRules expressions. To avoid
any overhead for the existing customers who do not want to use FEEL, by
default FEEL processing if OFF. To turn it on, before executing your decision

you need to write:
decision.put("FEEL", "On");

Allowed FEEL Operators and Predefined Functions

The current implementation allows you to use the standard arithmetic and

logical operators and functions for integer and real numbers — see examples in
the table below. The current FEEL implementation works only with numerical
decision variables. It utilizes an open source package "expr" initially developed

by Darius Bacon but essentially modified and now supported by OpenRules.

290

OpenRules, Inc.

OpenRules® User Manual

‘ Feature ‘ Syntax ‘ Examples
Numbers regular integer or 10, 465.25, 25, 3.14
real numbers
Add \ x+y \ 3+2
‘Subtract ‘ X"y ‘ 3-2
‘Multiply ‘ x*y ‘ 3%*2
‘Divide ‘ x/y ‘ 3/2
‘Poweri xV ‘ x**y or X"y ‘ 5**2
‘Negate ‘ "X ‘ -3
X<y
X <=y
Comparison X~y — 2 <> 3 [produces 1]
X=>y orx-=y 2 <> 2 [produces 0]
X>=y
X>y
1 and 1 [produces 1]
Logical "and" x and y 1 and O [produces 0]
0 and 0 [produces 0]
1 and 1 [produces 1]
Logical "or" Xory 1 and O [produces 1]
0 and 0 [produces 0]
abs(-5) [produces 5]
Absolute value abs(x) abs(5) [produces 5]
Maximum between max(x,y) max(5,6) [produces 6]
two numbers
Minimum between min(x,y) min(5,6) [produces 5]
two numbers
floor(3.5) [produces 3]
Floor floor(x) floor(-3.5) [produces -3]
Ceiling ceil(x) or ceiling(x) ceil(3.5) [produces 4]

ceil(-3.5) [produces -3]

|

Additional functions

The mathematical

constant "o" P
lex | exp(x) | exp(1) = 2.7182818284590451
. round(3.5) [produces 4]
Rounding round(x) round(-3.5) [produces -4]
") if(1,50, 100) [produces 50]
Conditional if(x,y,2) if(0,50,100) [produces 100]
‘Square root ‘ sqrt(x) ‘ sqrt(9) [produces 3]

300

OpenRules, Inc. OpenRules® User Manual

sin(x), cos(x),
tan(x), asin(x), sin(pi/2) [produces 1]
acos(x), atan(x)

Trigonometric
functions

Using '-' as a Not Applicable Symbol Inside Decision Tables

OpenRules historically leaves decision table cells empty when the proper
conditions and/or actions are not applicable. However, DMN requires using the
symbol '-' in these cases. So, now we allow a user to use both possibilities

interchangeably.

Defining Business Glossary

While defining decision tables, we freely introduced different decision variables
assuming that they are somehow defined. The business glossary is a special
OpenRules® table that actually defines all decision variables. The Glossary table

has the following structure:

Glossary glossary
Variable Business Concept Attribute Domain

The first column will simply list all of the decision variables using exactly the
same names that were used inside the decision tables. The second column
associates different decision variables with the business concepts to which they
belong. Usually you want to keep decision variables that belong to the same
business concept together and merge all rows in the column “Business Concept”
that share the same concept. Here is an example of a glossary from the standard

OpenRules® example “DecisionLoan”

310

OpenRules, Inc. OpenRules® User Manual

Glossary glossary

Variable Object Attribute Domain
Monthly Income monthlylncome 0-5000000
Mortgage Holder mortgageHolder Yes,MNo
Qutside Credit Score outsideCreditScore 0-999
Loan Holder loanHolder Yes Mo
Customer
Credit Card Balance creditCardBalance -1000000 - 100000000
Education Loan Balance educationLoanBalance (-1000000 - 100000000
Internal Credit Rating internalCreditRating ABCDF
Internal Analyst Opinion internalAnalystOpinion |High,Mid,Low
Income Validation Result incomeValidationResult | SUFFICIENT UNSUFFICIENT,?
Debt Research Result Request |debtResearchResult High Mid Low,?
Loan Qualification Result loanQualificationResult [QUALIFIED, NOT QUALIFIED, ?
Total Income totallncome 0-500000
Internal
Total Debt totalDebt 0-500000

All rows for the concepts such as “Customer” and “Request” are merged.

The third column “Attribute” contains “technical” names of the decision variables
— these names will be used to connect our decision variables with attributes of

objects used by the actual applications, for which a decision has been defined.

The application objects could be defined in Java, in Excel tables, in XML, etc.
The decision does not have to know about it: the only requirement is that the
attribute names should follow the usual naming convention for identifiers in

languages like Java: it basically means no spaces allowed.

The last column, “Domain”, is optional, but it can be useful to specify which
values are allowed to be used for different decision variables. Decision variable
domains can be specified using the naming convention for the intervals and
domains described below. The above glossary provides a few intuitive examples

of such domains. These domains can be used during the validation of a decision.

320

OpenRules, Inc. OpenRules® User Manual

Defining Test Data

OpenRules® provides a convenient way to define test data for decisions directly
in Excel without the necessity of writing any Java code. A non-technical user
can define all business concepts in the Glossary table using Datatype tables. For
example, here 1s a Datatype table for the business concept “Customer” defined

above:

Datatype Customer

Siring fullName

Siring SSN

int monthlylncome

int monthlyDebt

Siring mortgageHolder

int outsideCreditscore
String loanHolder

int creditCardBalance

int educationLoanBalance
String internalCreditRating
String internalAnalystOpinion

The first column defines the type of the attribute using standard Java types such
as “int”, “double”, “Boolean”, “String”, or “Date”. The second column contains the
same attribute names that were defined in the Glossary. To create an array of
objects of the type “Customer” we may use a special “Data” table like the one

below:

c L
SCEan lintermalCredd | Intemalanal

mongageHol | cutsideCradnse oedeCar

‘ fuName SSN marthhincome |monthyDett pries ore loartckder Balance | narﬂ:umc tR8ting vEAOpINON
‘

Credt [Education| internal | Internal
Borrower FullName| Borrower SSN frordhly | montnty Depe | Motgage |Outelde CrRGl| | opp oder | Card | Loan | Creeit | Anayst

Balance | Balance | Rating | Opinjon
{Peter N_Johnson 5000 2300] Yes | 72 No 2500 | 0 A |_Low
[Mary K Brown 0 2000 | Na | &0 to__ 654 | 23800 | B | Low
{Robest Cooper 5400 2800 ! Yeu | 735 Yes 1200 | ! | L hd

This table is too wide (and difficult to read), so we could actually transpose it to a

more convenient but equivalent format:

330

OpenRules, Inc.

OpenRules® User Manual

Data Customer customers
fullName Borrower Full Name Peter N. Mary K. Brown Robert
Johnson Cooper Jr.
SSN Borrower SSN 157-82-5344 056-45-8233 | 241-56-9082
monthlylncome Monthly Income 5000 4300 5400
monthlyDebt Monthly Debt 2300 2800 2800
mortgageHolder Mortgage Holder Yes No Yes
outsideCreditScore Outside Credit Score 720 6520 735
loanHolder Loan Holder No No Yes
creditCardBalance Credit Card Balance 2500 5654 1200
educationLoanBalance Education Loan 0 23800 0
Balance
internalCreditRating Internal Credit Rating A B C
internalAnalystOpinion Inlerna_l ﬁ_\nalysl Low Low Mid
Opinion

Now, whenever we need to reference the first customer we can refer to him as

customers[0]. Similarly, if you want to define a doubled monthly income for the

second custromer, “Mary K. Brown”, you may simply write

You can find many additional details about data modeling in this section.

(customers[1] .monthlyIncome * 2)

Connecting the Decisions with Business Objects

To tell OpenRules® that we want to associate the object customers[0] with our

business concept “Customer” defined in the Glossary, we need to use a special

table “DecisionObject” that may look as follows:

DecisionObject decisionObjects

Business Concept Business Object
Customer := customers[0]
Request .= loanRequests[0]
Internal .= internal

Here we also associate other business concepts namely Request and Internal
with the proper business objects — see how they are defined in the standard

example “DecisionLoan”.

340

OpenRules, Inc. OpenRules® User Manual

The above table connects a decision with test data defined by business users
directly in Excel. This allows the decision to be tested. However, after the
decision is tested, it will be integrated into a real application that may use
objects defined in Java, in XML, or in a database, etc. For example, if there are
instances of Java classes Customer and LoanRequest, they may be put in the
object “decision” that is used to execute the decision. In this case, the proper

table “decisionObjects” may look like:

DecisionObject decisionObjects

Business Concept Business Object
Customer .= decision.get("customer")
Request .= decision.get("loanRequest")
Internal = internal

It is important that Decision does not “know” about a particular object
implementation: the only requirement is that the attribute inside these objects

should have the same names as in the glossary.

Decision Execution

OpenRules® provides a template for Java launchers that may be used to execute

different decisions. There are OpenRules® API classes OpenRulesEngine and

Decision. Here is an example of a decision launcher for the sample project

“DecisionLoan”:

import com.openrules.ruleengine.Decision;
public class Main {
public static void main(String[] args) {
String fileMame = "file:rules/main/Decision.xls";

Decision decision = new Decision("DetermineloanPreQualificationResults",fileName);
decision.execute();

¥
Actually, it just creates an instance of the class Decision. It has only two

parameters:

1) a path to the main Excel file “Decision.xls”

2) aname of the main Decision inside this Excel file.

350

OpenRules, Inc. OpenRules® User Manual

When you execute this Java launcher using the provided batch file “run.bat” or
execute it from your Eclipse IDE, it will produce output that may look like the
following:

*** Decision DetermineloanPreQualificationResults ***

Decision has been initialized

Decision DetermineloanPreQualificationResults: Calculate Internal

Variables

Conclusion: Total Debt Is 165600.0

Conclusion: Total Income Is 360000.0

Decision DetermineloanPreQualificationResults: Validate Income

Conclusion: Income Validation Result Is SUFFICIENT

Decision DeterminelLoanPreQualificationResults: Debt Research

Conclusion: Debt Research Result Is Low

Decision DeterminelLoanPreQualificationResults: Summarize

Conclusion: Loan Qualification Result Is NOT QUALIFIED

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineloanQualificationResult
*** OpenRules made a decision ***

This output shows all sub-decisions and conclusion results for the corresponding

decision tables.

Decision Analysis

Decision Syntax Validation

OpenRules® automatically validates your decision by checking that:
- there are no syntax error in the organization of all decision tables
- values inside decision variable cells correspond to the associated domains

defined in the glossary.

OpenRules® also provides a special plugin for Eclipse IDE, a de-facto
standard project management tools for software developers within a Java-based
development environment. Eclipse is used for code editing, debugging, and
testing of rule projects within a single commonly known integrated development
environment. OpenRules® has been designed to catch as many errors as possible

in design-rime vs. run-time when it is too late.

Eclipse Plugin diagnoses any errors in Excel-files before you even deploy or run
your OpenRules-based application. To make sure that Eclipse controls your
OpenRules® project, you have first to right-click to your project folder and "Add

OpenRules Nature". You always can similarly "Remove OpenRules Nature".

36 ©

http://www.eclipse.org/

OpenRules, Inc. OpenRules® User Manual

To be validated, your main xIs-files should be placed into an Eclipse source folder
while all included files should be kept in regular (non-source) folders.
OpenRules® Plugin displays a diagnostic log with possible errors inside the
Eclipse Console view. The error messages include hyperlinks that will open the
proper Excel file with a cursor located in a cell where the error occurred. The
following picture shows how OpenRules® Plugin automatically diagnoses errors

in the Excel-files and displays the proper error messages:

& Java - RunHelloCustomer.java - Eclipse SDK 15 ol x
File Edit Source Refactor Navigate Search Project Run Window Help
|C5 =G0 3= O Q> |[E#we- | @™ [(5o] 21 5[v
J;‘u-f‘.-{b(}jv;-
r XY
{8 pack... Sg\iera... lNavi... = O || 3] runHelloCustomer java m\ =0
oM 'BfR Al
E!-té lolava 3 import com.openrules.ruleengine.COpenRulesEngine; -
[315 src) :
E!Ei hello public class RunHelloCustomer {
¢ @-[J] customer.java 0| | _’r:'
- III Response.java
. - : = = >
: - [J] RunHelloCustomer.java ProniJavadochedaraﬁmnga’dtorngl Ex Eal e o
‘: - log4j'.properﬁes —||openRules Console
[3‘39 rules/main ** Sep 10,2006 05:21:35 PM - HelloJava [C:/OpenRules300/workspace/Hell4)
. B8] HelloCustomer.xis Exror: Method defineGreetingX(int,hello.Response) not found
B3 rules Invalid Code Fragment: e
E-E indude
:":@”e'@”'es-x‘s int hour = Calendar.getInstance () .get (Calendar.HOUR OF DAY);:
[build.properties defineGreetingX (hour, response);
5] build. xml R G A G RN
compile.bat defineSalutation (customer,response);
i , readme. txt out("From Rules: " + response.map.get ("greeting") + ", " +
run.bat
-0
Elb l:|ellonp at file:/C: enRules300/workspace/HelloJdava/rules/main/HellioCustc
o EEB src
i rhoc ‘1 Z g
d l;l"" 4 | :J‘J
[v |

Decision Testing

OpenRules® provides an ability to create a Test Harness comprised of an
executable set of different test cases. It is important that the same people who
design rules (usually business analysts) are able to design tests for them.
Usually they create test cases directly in Excel by specifying their own
data/object types and creating instances of test objects of these types.

Test data can be defined in Excel using tables Datatype and Data as described

above in the section Defining Test Data. Additionally OpenRules® provides an

370

OpenRules, Inc. OpenRules® User Manual

automatic comparison of expected and actual results of the decision
execution. You may define the expected execution results using special decision
tables of the type "DecisionTableTest". Such tables may define your test cases
containing:

1) Test objects for different business concepts defined in the Glossary

2) The expected results for several decision variables.
For example, the standard project "DecisionPatientTherapy" includes test Data

objects "visits" and "patients":

Data DoctorVisit visits

date encounterDiagnosis |recommendedMedication | recommendedDose
Dat E ter Di . Recommended Recommended
ate ncounter Diagnosis Medication D
2152011 Acute Sinusitis ? ?
22512011 Acute Sinusitis 7 ?
Data Patient patients
name age allergies creatinineLevel |creatinineClearance
. Creatinine Creatinine
Name Age Allergies Level Clearance
John Smith | 58 Penicillin 2.00 44.42
Streptomycin
Mary Smith B5 1.80 48.03

To specify expected results for each of these two tests, we may add a decision

table of the type DecisionTableTest that we will call "testCases":

DecisionTableTest testCases
= ActionUseObject | ActionUseObject ActionExpect ActionExpect
Test ID Visit Patient Patient Creaﬁnlne Recon!me.nded
Clearance Medication
Test 1 = visits[0] -= patients[0] 44 42 Levofloxacin
Test 2 = visits[1] = patients[1] 48.04 Amoxicillin

Here the first column specifies test IDs, next two columns specify test-objects
defined in the above Data tables, and the last two columns specify the expected
results.
In our Java launcher instead of putting test objects into the decision object and
then calling decision.execute(), we may simply call

decision.test("testCases");

The Decision's method "test" will execute all tests from the Excel table

380

OpenRules, Inc. OpenRules® User Manual

"testCases" using business objects defined in the columns of the type
"ActionUseObject". After the execution of each test-case, the actually produced
results will be automatically compared with the expected results, which are
defined in the columns of the type "ActionExpect". All mismatches will be
reported in the execution log. For instance, the above example will produce the

following records:
Validating results for the test <Test 1>
Test 1 was successful
Validating results for the test <Test 2>
MISMATCH: variable <Patient Creatinine Clearance> has value <48.03>
while <48.04> was expected
Test 2 was unsuccessful

1 test(s) out of 2 failed!

You may add any number of business objects and decision variables with
expected results to your test cases. An example of the test harness can be found

in the project “DecisionPatientTherapyTest” in the standard installation.

Decision Execution Reports

OpenRules® provides an ability to generate decision execution reports in the
HTML-format. To generate an execution report, you should add the following

setting to the decision’s Java launcher:
decision.put ("report", "On");

before calling decision.execute (). By default, execution reports are not
generated as they are needed mainly for decision analysis. Reports are

regenerated for every decision run.

During decision execution, OpenRules® automatically creates a sub-directory
“report” in your main project directory and generates a report inside this sub-
directory. For every decision table, including single-hit, multi-hit, and rule
sequencing tables, OpenRules® generates a separate html-file with the name
Report<n>.<DecisionTableName>.html, where n 1s an execution order
number for this particular decision table. For example, for the sample project

“DecisionLoan” OpenRules® will generate the following files:

390

OpenRules, Inc. OpenRules® User Manual

's' Report.Determinel canPreQualificationResults. html
'w? Report0l.DetermineloanPreQualificationResults.html
¢ Reportl2 CalculatelnternalVariables.htrml

€ Repori03.DeterminelncomeValidationResult.html

¢ Reportl4.DetermineDebtResearchResult.htrml

'-q? Reportl5.DetermineloanQualificationResult.html

The first file contains a list of links to all executed decision tables:

OpenRules Execution Report of Sat Jan 05 11:19:49 EST 2013

Decision "DetermineL.oanPreQualificationResults"

Decision Table

1 || Determinel.oanPreQualificationResulis
2 CalculateInternalVariables

3 DetermineIncomeValidationResult

4 DetermineDebtResearchResult

5 DeterminelLoanQualificationResult

Below are other generated files (one per decision table) with lists of rules (rows)

that were actually executed:

Decision Table "DetermineL.oanPreQualificationResults" (Rule Sequence)

E";"Eﬁl;e‘j ActionExecute
i Decisions Execute Rules
Calculate Internal Variables = CalculatelnternalVariables()
Validate Income = DeterminelncomeValidationR esult()
Debt Research = DetermineDebtResearchResult()
Summarize = DetermineL oanQualificationR esult()

40 ©

OpenRules, Inc. OpenRules® User Manual

Decision Table "CalculateInternalVariables" (Single-Hit)

Executed . . - ,
Conclusion Conclusion
Rule

Total Debt Total Income

Is == getlnt("Monthly Debt") * getlnt("Loan Term") || Is == getInt("Monthly Income”) * getnt("Loan Term")

Decision Table "DetermineIncomeValidationResult" (Single-Hit)

Executed
- Condition Conclusion
Rule

Total Income Income Validation Result

Is More Than == getlnt("Total Debt") * 2 Is SUFFICIENT

Decision Table “DetermineDebtResearchResult” (Single-Hit)

Condtion o Condiso onx 0 Coodinon Condhion < 3 Condtion Conchuscn

¥ Mortgage Owtssde (rrdn Outside Credit Loam Credit Card Edocation Loan Internal Credit lll!mll Analyst anﬂnulﬂ
! | Holder Score Scare Holder Bakace Balance Ratimg Opimion ‘
| Is Yeu l] | I Is High ’

Decision Table "Determinel.oanQualificationResult" (Single-Hit)

Execuied
Condition Condition Conclusion

Income Validation Result | Debt Research Result || Loan Qualification Result

Is SUFFICIENT Is One Of Mid, High Is QUALIFIED

These reports help a rule designer to analyze which rules were actually executed
and in which order. The “Executed Rule #’ corresponds to the sequential number

of a rule inside its decision table.

Note. Execution reports are intended to explain the behavior of certain decision
tables and are used mainly for analysis and not for production. If you turn on
report generation mode in a multi-threaded environment that shares the same
instance of OpenRulesEngine, the reports will be produced only for the first

thread.

Decision Tracing

41©

OpenRules, Inc. OpenRules® User Manual

OpenRules® relies on the standard Java logging facilities for the decision output.
They can be controlled by the standard file “log4j.properties” that by default

looks like below:

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%m%n
#log4j.logger.org.openl=DEBUG

You may replace INFO to DEBUG and uncomment the last line to see OpenRules
debugging information. To redirect all logs into a file “results.txt” you may

change the file “log4j.properties” as follows:

log4j.rootLogger=INFO, stdout
#log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout=org.apache.log4j.FileAppender
log4j.appender.stdout.File=results.txt
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%m%n

uncomment the next line to see OpenRules debug messages
#log4dj.logger.org.openl=DEBUG

You may control how “talkative” your decision is by setting decision’s parameter

“Trace”. For example, if you add the following setting to the above Java launcher

decision.put ("trace", "Off");

just before calling decision.execute(), then your output will be much more
compact:
*** Decision DeterminelLoanPreQualificationResults ***
Decision DeterminelLoanPreQualificationResults: Calculate Internal
Variables
Decision DetermineloanPreQualificationResults: Validate Income
Decision DetermineloanPreQualificationResults: Summarize

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineloanQualificationResult
*** OpenRules made a decision ***

You may also change output by modifying the tracing details inside the proper
decision templates in the configuration files “DecisionTemplates.x1s” and

“DecisionTableExecuteTemplates.xls”.

Rules Repository Search

42 ©

OpenRules, Inc. OpenRules® User Manual

To analyze rules within one Excel files you may effectively use familiar Search

and Replace features provided by Excel or Google Docs.

When you want to search across multiple Excel files and folders, you may use a

free while powerful tool called “IceTeaReplacer” that can be very useful for doing

search & replace in OpenRules repositories. Here is an example of its graphical

interface:

| Searchfor Martal Satus
| Reptace wih:
Searchpath: C_SourceRepo\opennses solver\DMN Primer\

ICA S ourceBapo \opanrules '\t
C _SameRapo\noamleudv«\DMN Punar\moodoly\Gosuy:dl
C_SourczRepo'\opervules solver\DMN Pamer\repository\Decisions'\PrePost BureauRisk \Application ScoreFules s

[7] Match whole word anly
I7] igrore case

| Backup before replace
[| Don search in subfolders

| Select Al | [Select None | Hokd CTRL or SHIFT buttons to select. You may also double-<lick an item to apen .

| Done searching. Found 3 matches. Select needed files and click replace.

The following options are available:

e Perform search before replacing
e Match whole word only

e Ignore word case

e Do backup before replace

e Deselect files on which you don’t want to perform replace.

Consistency Checking

OpenRules® provides a special component Rule Solver™ that along with powerful
optimization features allow a user to check consistency of the decision models
and find possible conflicts within decision tables and across multiple decision
tables. The detail description of the product can be found at

http://openrules.com/pdf/RulesSolver.UserManual.pdf.

43©

http://www.icetear.com/
http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.com/rulesolver.htm
http://openrules.com/pdf/RulesSolver.UserManual.pdf

OpenRules, Inc. OpenRules® User Manual

Special Decision Model Analyzers

OpenRules® provides two special web-based analyzers for decision models created in
accordance with the DMN standard:

1) WHY-Analyzer: allows a user to graphically present and execute decision

model showing the decision variables with produced values and all rules that
were actually executed to produce these values

2) WHAT-IF Analyzer: allows a user to activate/deactivate some rules.

Immediately see the changes in the domains of decision variables, find one

solution and navigate through multiple solutions, find an optimal solution.

ADVANCED DECISION TABLES

In real-world projects you may need much more complex representations of rule
sets and the relationships between them than those allowed by the default
decision tables. OpenRules® allows you to use advanced decision tables and to

define your own rule sets with your own logic.
Specialized Conditions and Conclusions

The standard columns of the types “Condition” and “Conclusion” always have
two sub-columns: one for operators and another for values. OpenRules® allows
you to specify columns of the types “If’ and “Then” that do not require sub-
columns. Instead, they allow you to use operators or even natural language
expressions together with values to represent different intervals and domains of
values. Read about different ways to represent intervals and domains in this

section below.

Sometimes your conditions or actions are not related to a particular decision
variable and can be calculated using formulas. For example, a condition can be
defined based on combination of several decision variables, and you would not
want to artificially add an intermediate decision variable to your glossary in
order to accommodate each needed combination of existing decision variables. In

such a case, you may use special columns “ConditionAny” and “ConclusionAny”.

44 ©

http://openrules.com/WhyAnalyzer.htm
http://openrules.com/WhatIfAnalyzer.htm

OpenRules, Inc. OpenRules® User Manual

The titles of these columns do not represent any decision variable and may
contain any text. You may use any formulas inside the cells of these columns

that execute some custom actions.

Multi-Hit Decision Tables

By default, the DecisionTable are single-hit meaning that after the execution of
the first satisfied rule the table ends its work. You even can use a keyword
DecisionTableSingleHit along with DecisionTable. However, sometimes this

behavior is not sufficient.
OpenRules® provide two additional types of decision tables:

e DecisionTablel or DecisionTableMultiHit (or DT1)

e DecisionTable2 or DecisionTableSequence (or DT2).

DecisionTableMultiHit

Contrary to the standard single-hit DecisionTable, decision tables of type
“DecisionTablel” or “DecisionTableMultiHit” are implemented as multi-hit

decision tables. “DecisionTablel” supports the following rules execution logic:

1. All rules are evaluated and if their conditions are satisfied, they will be
marked as “to be executed”

2. All actions columns (such as “Conclusion”, “Then”, “Action”, “ActionAny”,
or “Message”) will be executed in top-down order for the “to be executed”

rules.

Thus, you should make two important observations about the behavior of the

“DecisionTablel”:

¢ Rule actions cannot affect the conditions of any other rules in the decision
table — there will be no re-evaluation of any conditions
e Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

45 ©

OpenRules, Inc. OpenRules® User Manual
Let’s consider an example of a rule that states: “A person of age 17 or older is
eligible to drive. However, in Florida 16 year olds can also drive”. If we try to

present this rule using the default single-hit DecisionTable, it may look as

follows:

DecisionTable ValidateDrivingEligibility

Condition Condition Conclusion
Driver's Age US State Driving Eligibility

= 17 Is Eligible
Is 16 Is Mot Florida Is Mot Eligible

ls 16 ls Florida Is Eligible
< 16 Is Mot Eligible

Using a multi-hit DecisionTablel we may present the same rule as:

DecisionTable1 ValidateDrivingEligibility

Condition Condition Conclusion
Driver's Age US State Driving Eligibility
Is Eligible
< 17 Is Mot Eligible
> 16 Is Flarida Is Eligible

In the DecisionTablel the first unconditional rule will set “Driving Eligibility” to
“Eligible”. The second rule will reset it to “Not Eligible” for all people younger
than 17. But for 16 year olds living in Florida, the third rule will override the

variable again to “Eligible”.

It 1s also very convenient to use multi-hit decision tables to accumulate some
data. For example, the following decision table accumulates “Applicant Credit

Score” based on 4 different conditions:

46 ©

OpenRules, Inc. OpenRules® User Manual

DecisionTableMultiHit ApplicantCreditScoreDecisionTable

If If If If Conclusion
Applicant Number of Applicant had Applicant Years | Applicant Amount of
Default Payments in declared with Current Available Credit | Applicant Credit Score
Last 12 Months Bankrupcy Account Bank Used Percentage
[1-3] 100
[4-6] 50
=f 0
0 250
TRUE 0
FALSE 250
=1 50
+=
[1-3] 150
=3 250
[0-24] 200
[25-48] 249
[50-74] 150
[75-100] 100
=100 0

Note that the operator “+=" increments the score using a value provided by the

proper row (rule) of the last column.

DecisionTableSequence

There 1is one more type of decision table, “DecisionTable2” or
“DecisionTableSequence” that is similar to “DecisionTablel” but allows the
actions of already executed rules to affect the conditions of rules specified below

them. “DecisionTable2” supports the following rules execution logic:

1. Rules are evaluated in top-down order and if a rule condition is satisfied,
then the rule actions are immediately executed.
2. Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

Thus, you may make two important observations about the behavior of the

“DecisionTable2”:

e Rule actions can affect the conditions of other rules

470©

OpenRules, Inc. OpenRules® User Manual

e There could be rule overrides when rules defined below already executed

rules could override already executed actions.

Let’s consider the following example:

DecisionTable? CalculateTaxablelncome

Condition Conclusion

Taxable Income Taxable Income

Is | ::= ${Adjusted Gross Income]} - ${Dependent Amount}

Is Less 0 Is 0

Here the decision variable “Taxable Income” is present in both the condition and
the action. The first (unconditional) rule will calculate and set its value using the
proper formula. The second rule will check if the calculated value is less than 0.

If it 1s true, this rule will reset this decision variable to O.

Minimizing the Size of Decision Tables

When your decision table contains too many columns it may become too large
and unmanageable. In practice large decision tables have many empty cells
because not all decision variables participate in all rule conditions even if the
proper columns are reserved or all rules. To make your decision table more
compact, OpenRules® allows you to move a variable name from the column title
to the rule cells. To do that, instead of the standard column’s structure with two

sub-columns

Condition
Variable Mame

Oper | Value

you may use another column representation with 3 sub-columns:

ConditionVarOperValue
Attribute
Variable Name | Oper | Value

48 ©

OpenRules, Inc. OpenRules® User Manual

This way you may replace a wide table with many condition columns like the one

below:

DecisionTable classifcationRules

Condition Condition Condition
C_OTH _EXPNS AMT|A ESTATE TAX AMT Attribute
= 398 == 10054 Oper Value
Is Low = 63
== 53 Is Low = 49
Is Low = 86
Is Low = 73
Is Other = 56

to a much more compact table that may look as follows:

DecisionTable classifcationRules

ConditionVarOperValue ConditionVarOperValue | ConditionVarOperValue
Attribute Attribute - Attribute

C_OTH_EXPNS_AMT| == 398 |A ESTATE TAX A ==| 10054 Attribute | Oper| Value | Is High =| 66
E_PRTSCRP _TOT L{ =<=| -6955 |AGIL_TPI_RATIO |<=]0.95993 Is Low =| B3
C_OTH_EXPNS_AMT| == 83 ORD DIVIDENDS == | BB17 Is Low = 4%
TAXABLE_INC_TPI_R]== [0.810447|TENT TAX_AMT |==| 301630 Is Low =| B6
DIVIDENDS_AND_INT| == 12348 |EXTNSN_PYMNT |<= | 30000 Is Low = Td

s Other =| 56

You simply replace a column of the type “Condition” to the one that has the
standard type “ConditionVarOperValue”. Similarly, instead of a column of the
type “Conclusion” you may use a column of the type “ConclusionVarOperValue”

with 3 sub-columns that represent a variable name, an operator, and a value.

Business Rules Defined on Collections of Objects

Previously, when OpenRules® users needed to run decisions against collections
(arrays) of business objects, they needed to use Java loops. This release adds
an ability to execute one decision against a collection of objects and to calculate

values defined on the entire collection within single decision run.

Let's consider an example "DecisionManyCustomers" added to the standard
OpenRules® installation. There is a standard Java bean Customer with
different customer attributes such as name, age, gender, salary, etc. There is

also a Java class "CollectionOfCustomers":

49 ©

OpenRules, Inc. OpenRules® User Manual

public class CollectionOfCustomers {
Customer[] customers
int minSalary
int maxSalary
int numberOfRichCustomers
int totalSalary

We want to pass this collection to a decision that will process all customers
from this collection in one run and will calculate such attributes as
"minSalary", "totalSalary", "numberOfRichCustomers", and similar attributes,
which are specified for the entire collection. Each customer within this

collection can be processed by the following rules:

DecisionTable1 EvaluateOneCustomer
Condition Conclusion Conclusion Conclusion Conclusion Conclusion
Number of Rich . . .
Salary Wealth Total Salary Customers Maximal Salary Minimal Salary
+= | = Bl{Salary} Max | = 5l{Salary} [Min | = $l{Salary}
= | 100000 Is Rich += 1

Pay attention that we use here a multi-hit table (DecisionTablel), so both
rules will be executed. The first one unconditionally calculates the Total
Salary, Maximal and Minimal Salaries. The second rule defines a number of
"rich" customers inside the collection. To accumulate the proper values, we use

the existing operator "+=" and newly introduced operators "Min" and "Max".

To execute the above decision table for all customers, we will utilize a new

action "ActionRulesOnArray" within the following decision table:

DecisionTable CalculateCustomerTotals
Conclusion Conclusion Conclusion ActionRulesOnArray
Total Salary |Maximal Salary | Minimal Satary | AT | opiect Type Rules
Objects
Is 0 Is 0 Is | 1000000 |Customers Customer EvaluateOneCustomer

Here the first 3 actions (conclusions) simply define initial values of collection

attributes. The last action has 3 sub-columns:

50 ©

OpenRules, Inc. OpenRules® User Manual

The name of the array of objects as it is defined in the glossary
("Customers")

The type of those objects ("Customer")

The name of the decision table ("EvaluateOneCustomer") that will be

used to processes each objects form this collection.

Thus, a combination of the two decisions tables (similar to the above ones)
provides business users with a quite intuitive way to apply rules over
collections of business objects without necessity to deal with programming

constructions.

Decision Tables for Comparing Ranking Lists

In many real-world situations decisions are made based on comparison of
attributes that belong to different predefined lists of values while the values
inside these lists are ordered (ranked). For example, a business rule may

sound as follows:

"If Diagnostic Need is Stronger than Sensitivity Level
Then Document Access should be Allowed"

Here the Diagnostic Need could belong to the ranking list:
1. Immediately Life-Threatening
2. Life-Threatening
3. Acute
4. Chronic.

Similarly the Sensitivity Level could belong to this ranking list:

1. High
2. Mid
3. Low.

Newly defined custom templates allow us to present the relations between
these two ranking lists in the following decision table of the new type

"DecisionTableCompareRanks":

510

OpenRules, Inc.

DecisionTableCompareRanks CompareDiagnosticNeed'.*."ithSensi;ivityLevel

OpenRules® User Manual

Diagnostic Need ensitivity Level High Mid Low
Immediately Life-Threatening Stronger Stronger Stronger
Life-Threatening Weaker Stronger Stronger
Acute Weaker Weaker Weaker
Chronic Weaker Weaker Weaker

Then the above rule may be expressed using the following decision table of the

new type "DecisionTableRanking":

DecisionTableRanking DefineDocumentAccess
ConditionCompareRanks Conclusion
If
<rank1> <stronger/weaker> <rank2> cuimznt oo
Diagnostic Need | Stronger Sensitivity Level Is Allow
Diagnostic Need Weaker Sensitivity Level Is Decline

To define "Stronger/Weaker" relations between these ranks, this decision table
will automatically invoke the decision table with the dynamically defined

name "Compare<rank1>With<rank2>' (after removing all spaces).

The benefits of these new types of decision tables become clear when you think
about supporting hundreds of similar ranking lists. These tables may cover
complex relationships between multiple ranking lists and at the same time

they remain easy to understand and to be maintained by business users.

The complete working example "DecisionRankinglists" with the proper
custom templates (see file "RankTemplates.xls") is included into the standard

OpenRules® installation.

Defining and Using Rule Identification

You may associate with any rules a unique identificator (ID) and later on refer
to this ID in the conclusion columns. To do that, you may use the column of

the type "#" as the very first column of your decision table. If you put any text

52©

OpenRules, Inc. OpenRules® User Manual

ID in front of the rule inside this column, then this ID will be assigned to this
rule but only when it actually will be executed. Then you may to your rule IDs

in the action columns like in the following example:

DecisionTable Swap

Rule Id X
Rule 1 1 2 Executed rule

If you look at the implementation of the column "Message" in the file

"DecisionTableExecuteTemplates.xls", you will see the following Java snippet:

String out = decision.macro(message);
decision.log(out + " from " + $TABLE_TITLE);

Here the Decision’s method "macro" replaces $RULE_ID with the actual ID of
this rule within "message". You may similarly use this method inside your own
custom templates, e.g. to save rule tracing information in your own desired

way.

SPREADSHEET ORGANIZATION AND MANAGEMENT

OpenRules® uses Excel spreadsheets to represent and maintain business rules,
web forms, and other information that can be organized using a tabular format.
Excel is the best tool to handle different tables and is a popular and widely used

tool among business analysts.

Workbooks, Worksheets, and Tables

OpenRules® utilizes commonly used concepts of workbooks and worksheets.
These can be represented and maintained in multiple Excel files. Each
OpenRules® workbook is comprised of one or more worksheets that can be used
to separate information by categories. Each worksheet, in turn, is comprised of

one or more tables. Decision tables are the most typical OpenRules® tables and

53©

OpenRules, Inc. OpenRules® User Manual

are used to represent business rules. Workbooks can include tables of different

types, each of which can support a different underlying logic.

How OpenRules® Tables Are Recognized

OpenRules® recognizes the tables inside Excel files using the following parsing

algorithm.

1. The OpenRules® parser splits spreadsheets into “parsed tables”. Each logical
table should be separated by at least one empty row or column at the start of
the table. Table parsing is performed from left to right and from top to
bottom. The first non-empty cell (i.e. cell with some text in it) that does not
belong to a previously parsed table becomes the top-left corner of a new
parsed table.

2. The parser determines the width/height of the table using non-empty cells as
its clues. Merged cells are important and are considered as one cell. If the
top-left cell of a table starts with a predefined keyword (see the table below),
then such a table is parsed into an OpenRules® table.

3. All other "tables," i.e. those that do not begin with a keyword are ignored and

may contain any information.

The list of all keywords was described above. OpenRules® can be extended with

more table types, each with their own keyword.

While not reflected in the table recognition algorithm, it is good practice to use a
black background with a white foreground for the very first row. All cells in this
row should be merged, so that the first row explicitly specifies the table width.
We call this row the "table signature'. The text inside this row (consisting of one
or more merged cells) is the table signature that starts with a keyword. The
information after the keyword usually contains a unique table name and

additional information that depends on the table type.

If you want to put a table title before the signature row, use an empty row

between the title and the first row of the actual table. Do not forget to put an

54©

OpenRules, Inc. OpenRules® User Manual

empty row after the last table row. Here are examples of some typical tables

recognized by OpenRules®.

OpenRules® table with 3 columns and 2 rows:

Keyword <some text>

Something Something Something

Something Something Something
OpenRules® table with 3 columns and still 2 rows:

Keyword Something Something

Something Something Something

Something Something Something

OpenRules® table with 3 columns and 3 rows (empty initial cells are acceptable):

Keyword <some text>

Something

Something

Something

Something

Something

OpenRules® table with 3 columns and 2 rows (the empty 3rd row ends the table):

Keyword <some text>

Something Something Something
Something Something Something
Something Something Something

OpenRules® table with 2 columns and 2 rows (the empty cell in the 3rd column of
the title row results in the 4th columns being ignored. This also points out the

importance of merging cells in the title row):

Keyword | Something Something
Something Something Something Something
Something Something Something Something

OpenRules® will not recognize this table (there is no empty row before the

signature row):

55 ©

OpenRules, Inc. OpenRules® User Manual

Table Title
Keyword <some text>
Something Something

Something Something
Something

Fonts and coloring schema are a matter of the table designer's taste. The
designer has at his/her disposal the entire presentation power of Excel (including
comments) to make the OpenRules® tables more self-explanatory. We
recommend you to follow the coloring and placement recommendations provided

by the OMG DMN standard.

RULES TABLES

OpenRules® supports different ways to represent business rules inside Excel
tables. The default decision tables described above are the most popular way to
present sets of related business rules and they do not require any coding.
However, there could be other types of decision tables that you may want to
create represent more complex execution logic that is frequently custom for

different conditions and actions.

Actually, any standard Decision Table is a special case of an OpenRules® rules
table that is based on a predefined template (see below). OpenRules® allows its
users to configure different types of custom decision tables directly in Excel.
These rules tables have been successfully used by major corporations in real-
world decision support applications in spite of the necessity to use Java snippets
to specify custom logic. This chapter describes different decision tables that go
beyond the default decision tables. It will also describe how to use simple IF-

THEN-ELSE statements within Excel-based tables of type "Method".

Rules Table Example

Here is an example of a worksheet with two rules tables:

56 ©

OpenRules, Inc. OpenRules® User Manual

FA4 Microsoft Excel - HelloCustomer.xls B """‘..: L |Elli|
J File= Edit \iew Insert Format Tools Data Window Help -|5| ﬂ
DEEe SRlB@al - &z A2 @32 2B &
[1] -] =]
olefl JA] B | C I D =
1 il
L 2
RN 1155 void defineGreetingiint hour, Response response)
2 Hour From Hour To Set Greeting
g8 0 11 Good Marning
g 12 17 Good Afternoon
10 18 22 Good Evening
i 23 24 Good Might
12|
13|
MEXIN 1155 void defineSalutation{Customer customer, Resp
i 18| Gender Marital Status Set Salutation
19 Male Plr.
a0 Female Married hirs.
|21] Female Single Ils.
2
|
4[4 » [[\ Decision Tables / Launcher £ Environment /
Ready || I [

The worksheet "Decision Tables" 1s comprised of two rules tables
"defineGreeting" and "defineSalutation". These tables start with signature rows
that are determined by a keyword “Rules” in the first cell of the table. A table

signature in general has the following format:

Rules return-type table-name (typel parl, type2 par2,..)

where table-name is a one-word function name and return-type, typel, and type
2 are types defined in your OpenRules® configuration. For example, type may be

any basic Java type such as int, double, Date, String, or your own type Customer.

All of the columns have been merged into a single cell in the signature rows.
Merging cells B3, C3, and D3 specifies that table "defineGreeting" has 3 columns.
A table includes all those rows under its signature that contain non empty cells:
in the example above, an empty row 12 indicates the end of the table

"defineGreeting".

Limitation. Avoid merging rule rows in the very first column (or in the very first

row for horizontal tables) - it may lead to invalid logic.

57©

OpenRules, Inc. OpenRules® User Manual

Business and Technical Views
OpenRules® rules tables have two views:

[1] Business View

[2] Technical View

These two views are implemented using Excel's outline buttons [1] and [2] at the
top left corner of every worksheet - see the figure below. This figure represents a
business view - no technical details about the implementation are provided. For
example, from this view it 1s hard to tell for sure what greeting will be generated
at 11 o'clock: "Good Morning" or "Good Afternoon"? If you push the Technical
View button [2] (or the button "+" on the left), you will see the hidden rows with
the technical details of this rules table:

[Tz |A] B | c D
2
i R de nGrac o R
|4 C1 c2 A
min <= hour hour <= max rerzepg:sn;.map_put{‘greetmg "
e int min int max String greeting
= |7 Hour From Hour To Set Greeting
| 3 0 11 Good Marning
g 12 17 Good Afternoon
10 13 22 Good Evening
EE 23 24 Good Might

The technical view opens hidden rows 4-6 that contain the implementation
details. In particular, you can see that both "Hour From" and "Hour To" are
included in the definition of the time intervals. Different types of tables have

different technical views.

The technical view is oriented to a technical user, who is not expected to be a
programming guru but rather a person with a basic knowledge of the "C" family

of languages which includes Java. Let's walk through these rows step by step:

58 ©

OpenRules, Inc. OpenRules® User Manual

Row "Condition and Action Headers" (see row 4 in the table above). The

initial columns with conditions usually start with the letter "C", for example
"C1", "Condition 1". The columns with actions usually start with the letter
"A", for example "A1", "Action 1".

Row "Code" (see row 5 in the table above). The cells in this row specify the

semantics of the condition or action associated with the corresponding
columns. For example, the cell B5 contains the code min <= hour. This
means that condition C1 will be true whenever the value for minin any cell
in the column below in this row is less than or equals to the parameter Aour.
If Aouris 15, then the Cl-conditions from rows 8 and 9 will be satisfied.
The code in the Action-columns defines what should be done when all

conditions are satisfied. For example, cell D5 contains the code:
response.map.put(“greeting”, greeting)

This code will put a string (parameter “greeting”) chosen from a row where
all of the conditions are satisfied into the map associated with the object

“response”.

Row "Parameters" (see row 6 in the table above). The cells in this row specify

the types and names of the parameters used in the previous row.

Row "Display Values" (see row 7 in the table above). The cells in this row

contain a natural language description of the column content.

Note. The standard decisions and decision tables do not use technical views at all

as they rely on predefined templates.

How Rules Tables Are Organized

As you have seen in the previous section, rules tables have the following
structure:

Row 1: Signature

Rules <JavaClass> tableName (Typel parl, Type2 par2, ..) -
Single-Hit Rule Table

59 ©

OpenRules, Inc. OpenRules® User Manual

Rules void tableName (Typel parl, Type2 par2, ..) -Multi-Hit
Rule Table

RuleSequence void tableName (Typel parl, Type2 par2, ..) -
Rule Sequence Table

Row 2! Condition/Action Indicators

The condition column indicator is a word starting with “C”.
The action column indicator is a word starting with “A”.
All other starting characters are ignored and the whole column is considered

as a comment

Row 3: Code

The cells in each column (or merged cells for several columns) contain Java
Snippets.

Condition codes should contain expressions that return Boolean values.

If an action code contains any correct Java snippet, the return type is

irrelevant.

Row 4: Parameters

Each condition/action may have from 0 to N parameters. Usually there is
only one parameter description and it consists of two words:

parameterType parameterName

Example: int min
parameterName is a standard one word name that corresponds to Java
identification rules.

parameterType can be represented using the following Java types:

- Basic Java types: boolean, char, int, long, double,
String, Date

- Standard Java classes: java.lang.Boolean,
java.lang.Integer, java.lang.Long, java.lang.Double,

java.lang.Character, java.lang.String, java.util.Date

60 ©

OpenRules, Inc. OpenRules® User Manual

Any custom Java class with a public constructor that has a String
parameter

One-dimensional arrays of the above types.

Multiple parameters can be used in the situations when one code is used for
several columns. See the standard example “Loan1.xls” in the workspace

“openrules.rules”.

Row 5: Columns Display Values

Text is used to give the column a definition that would be meaningful to

another reader (there are no restrictions on what text may be used).

Row 6 and below: Rules with concrete values in cells

Text cells in these rows usually contain literals that correspond to the
parameter types.
For Boolean parameters you may enter the values "TRUE" or "FALSE" (or

equally "Yes" or "No") without quotations.

Cells with Dates can be specified using java.util.Date. OpenRules® uses
java.text.DateFormat.SHORT to convert a text defined inside a cell into
java.util.Date. Before OpenRules® 4.1 we recommended our

customers not to use Excel's Date format and define Date fields in Excel as
Text fields. The reason was the notorious Excel problem inherited from a
wrong assumption that 1900 was a leap year. As a result, a date entered in
Excel as 02/15/2004 could be interpreted by OpenRules® as 02/16/2004.
Starting with release 4.1 OpenRules® correctly interprets both Date and Text

Excel Date formats.

Valid Java expression (Java snippets) may be put inside table cells by one of

two ways:

by surrounding the expression in curly brackets, for example:

{ driver.age+l; }

61©

http://support.microsoft.com/kb/214326/en-us

OpenRules, Inc. OpenRules® User Manual

Mne—n

by putting in front of your Java expression, for example:

:=driver.age+l

Make sure that the expression's type corresponds to the parameter type. If
you want the expression to produce a String type, use “::=" instead of “:=". For

example, you may write an expression
::= (driver.age +1)
that will be interpreted as a Java concatenation

W + (driver.age+l)

Empty cells inside rules means "whatever" or “not applicable”: the proper
condition will be considered automatically satisfied. An action with an empty
value will be ignored. If the parameter has type String and you want to enter

a space character, you must explicitly enter one of the following expressions:
s= Mo or T— nmon or { " "; }

Note. Excel 1s always trying to "guess" the type of text inside its cells and
automatically converts the internal representation to something that may not be
exactly what you see. For example, Excel may use a scientific format for certain
numbers. To avoid a "strange" behavior try to explicitly define the format "text"

for the proper Excel cells.

How Rules Tables Are Executed

The rules inside rules tables are executed one-by-one in the order they are placed
in the table. The execution logic of one rule (row in the vertical table) is the

following:
IF ALL conditions are satisfied THEN execute ALL actions.

If at least one condition is violated (evaluation of the code produces false), all

other conditions in the same rule (row) are ignored and are not evaluated. The

62©

OpenRules, Inc. OpenRules® User Manual

absence of a parameter in a condition cell means the condition is always
true. Actions are evaluated only if all conditions in the same row are evaluated
to be true and the action has non-empty parameters. Action columns with no

parameters are ignored.

For the default vertical rules tables, all rules are executed in top-down order.
There could be situations when all conditions in two or more rules (rows) are
satisfied. In that case, the actions of all rules (rows) will be executed, and the

actions in the rows below can override the actions of the rows above.
For horizontal rules tables, all rules (columns) are executed in left-to-right order.

Relationships between Rules inside Rules Tables

By default, OpenRules® does not assume any implicit ("magic") execution logic,
and executes rules in the order specified by the rule designer. All rules are
executed one-by-one in the order they are placed in the rules table. There is a

simple rule that governs rules execution inside a rules table:

The preceding rules are evaluated and executed first!

OpenRules® supports the following types of rules tables that offer different

execution logic to satisfy different practical needs:

Multi-hit rules tables
Single-hit rules tables
Rule Sequences.

Note. OpenRules® uses a constraint-based rule engine to execute decision models in
the inferential mode when an order of rules inside decision tables and between
tables is not important.

Multi-Hit Rules Tables

A multi-hit rules table evaluates conditions in ALL rows before any action is
executed. Thus, actions are executed only AFTER all conditions for all rules

have already been evaluated. From this point of view, the execution logic is

63 ©

http://openrules.com/rulesolver.htm

OpenRules, Inc. OpenRules® User Manual

different from traditional programming if-then logic. Let us consider a simple

example. We want to write a program "swap" that will do the following:

If x is equal to 1 then make x to be equal to 2.
If x is equal to 2 then make x to be equal to 1.

Suppose you decided to write a Java method assuming that there is a class App

with an integer variable x. The code may (but should not) look like this:

void swapX (App app) {
if (app.x == 1) app.x = 2;
if (app.x == 2) app.x = 1;

Obviously, this method will produce an incorrect result because of the missing
"else". This is “obvious” to a software developer, but may not be at all obvious to
a business analyst. However, in a properly formatted rules table the following

representation would be a completely legitimate:

Then make x to be
If x equals to
equal to
1 2
2 1

It will also match our plain English description above. Here is the same table

with an extended technical view:

Rules void swapX(App app)

C A
app.x == oldValue app.x = newValue
int oldValue int new\alue
Then make x to be
If x equals to
equal to
1 2
2 1

64 ©

OpenRules, Inc. OpenRules® User Manual

Rules Overrides in Multi-Hit Rules Tables

There could be situations when all conditions in two or more rules (rows) are
satisfied at the same time (multiple hits). In that case, the actions of all rules
(rows) will be executed, but the actions in the rows below can override the
actions of the rows above. This approach also allows a designer to specify a very

natural requirement:
More specific rules should override more generic rules!

The only thing a designer needs to guarantee is that "more specific" rules are
placed in the same rules table after "more generic" rules. For example, you may
want to execute Action-1 every time that Condition-1 and Condition-2 are
satisfied. However, if additionally, Condition-3 is also satisfied, you want to
execute Action-2. To do this, you could arrange your rules table in the following

way-

Condition-1 | Condition-2 | Condition-3| Action-1 Action-2

X X X

X X X X

In this table the second rule may override the first one (as you might naturally

expect).

Let's consider the execution logic of the following multi-hit rules table that
defines a salutation "Mr.", "Mrs.", or "Ms." based on a customer's gender and

marital status:

Rules void defineSalutation(Customer customer, Response response)

Gender Marital Status Set Salutation
Male Mr.

Female Married Mrs.

Female Single Ms.

65 ©

OpenRules, Inc. OpenRules® User Manual

If a customer 1s a married female, the conditions of the second rules are satisfied

and the salutation "Mrs." will be selected. This is only a business view of the
rules table. The complete view including the hidden implementation details

("Java snippets") is presented below:

Rules void defineSalutation(Customer customer, Response response)

C1 C2 Al
customer.gender.| customer.maritalStatus. | response.map.put("salutation”,s
equals(gender) equals(status) alutation);
String gender String status String salutation
Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.

The OpenRulesEngine will execute rules (all 3 "white" rows) one after another.
For each row if conditions C1 and C2 are satisfied then the action Al will be
executed with the selected "salutation". We may add one more rule at the very

end of this table:

Rules void defineSalutation(Customer customer, Response

response)
Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.
?2??

In this case, after executing the second rule OpenRules® will also execute the
new, 4th rule and will override a salutation "Mrs." with "???". Obviously this is
not a desirable result. However, sometimes it may have a positive effect by
avoiding undefined values in cases when the previous rules did not cover all
possible situations. What if our customer is a Divorced Female?! How can this
multi-hit effect be avoided? What if we want to produce "???" only when no other

rules have been satisfied?

66 ©

OpenRules, Inc. OpenRules® User Manual

Single-Hit Rules Tables

To achieve this you may use a so-called "single-hit" rules table, which is specified
by putting any return type except "void" after the keyword "Rules". The
following is an example of a single-hit rules table that will do exactly what we

need:

Rules String defineSalutation(Customer customer, Response response)

Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.
???

Another positive effect of such "single-hitness" may be observed in connection
with large tables with say 1000 rows. If OpenRules® obtains a hit on rule #10 it
would not bother to check the validity of the remaining 990 rules.

Having rules tables with a return value may also simplify your interface. For
example, we do not really need the special object Response which we used to
write our defined salutation. Our simplified rules table produces a salutation

without an additional special object:

Rules String defineSalutation(Customer customer) |

C1 Cc2 Al
customer.gender. customer.maritalStatus return salutation:
equals(gender) .equals(status) '

String gender String status String salutation

Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.
?7?7?

Please note that the last action in this table should return a value that has the
same type as the entire single-hit table. The single-hit table may return any
standard or custom Java class such as String or Customer. Instead of basic Java
types such as "int" you should use the proper Java classes such as Integer in

the table signature.

67 ©

OpenRules, Inc. OpenRules® User Manual

Here is an example of Java code that creates an OpenRulesEngine and executes

the latest rules table "defineSalutation":

public static void main(String[] args) {
String fileName = "file:rules/main/HelloCustomer.xls";
OpenRulesEngine engine =
new OpenRulesEngine (fileName) ;
Customer customer = new Customer();
customer.setName ("Robinson") ;
customer.setGender ("Female") ;
customer.setMaritalStatus ("Married") ;
String salutation =
(String)engine.run ("defineSalutation", customer) ;
System.out.println(salutation);

Rule Sequences

There is one more type of rules tables called “Rule Sequence” that is used mainly
internally within templates. Rule Sequence can be considered as a multi-hit
rules table with only one difference in the execution logic, conditions are not
evaluated before execution of the actions. So, all rules will be executed in top-
down order with possible rules overrides. Rule actions are permitted to affect the
conditions of any rules that follow the action. The keyword “Rules” should be
replaced with another keyword “RuleSequence”. Let’s get back to our “swapX”

example. The following multi-hit table will correctly solve this problem:

Rules void swapX[App app)

c A
app.x == oldValue app.x :pr:]e::\falue;
int oldValue int new\Value
If x equals to Then make X to be
o equal to
2
2 1

However, a similar rule sequence

68 ©

OpenRules, Inc. OpenRules® User Manual

RuleSequence void swapX{App app)
C A
app.x == oldValue appx= neu'.!‘hfdue;
app.x;
int oldValue int newValue
If x equals to Then make x to be
°q equal to

2

2 1

will fail because when x 1s equal to 1, the first rule will make it 2, and

then the second rules will make it 1 again.

Relationships among Rules Tables

In most practical cases, business rules are not located in one file or in a single
rule set, but rather are represented as a hierarchy of inter-related rules tables

located in different files and directories - see Business Rules Repository.

Frequently, the main Excel-file contains a main method that specifies the
execution logic of multiple decision tables. You may use the table “Decision” for
the same purposes. In many cases, the rule engine can execute decision tables

directly from a Java program — see API.

Because OpenRules® interprets rules tables as regular methods, designers of
rules frequently create special "processing flow" decision tables to specify the
conditions under which different rules should be executed. See examples of
processing flow rules in such sample projects as Loan2 and LoanDynamics in the

workspace “openrules.web”.

Simple AND / OR Conditions in Rules Tables

All conditions inside the same row (rule) are considered from left to right using

the AND logic. For example, to express

if (A>5 && B >10) {do something}

you may use the rules table:

69 ©

OpenRules, Inc.

OpenRules® User Manual

Rules void testAND(int a, int b) |

C1l C2 Al
a>5 b>10 System.out.printin(text)
String X String x

A>5

B >10

String text
X X ‘ Something \

To express the OR logic

if (A>5 || B >10) {do something}

you may use the rules table:

Rules void testOR(int a, int b)

C1l C2 Al
a>5 b>10 System.out.printin(text)

String x String x String text
A>5 5> 10 (I o

X Something

X

Sometimes instead of creating a decision table it is more convenient to represent
rules using simple Java expressions inside Method tables. For example, the

above rules table may be easily represented as the following Method table:

Method void testOR(int a, int b)

if (@>5 || b>10) System.out.printIn("Something");

Horizontal and Vertical Rules Tables

Rules tables can be created in one of two possible formats:

Vertical Format (default)

Horizontal Format.

Based on the nature of the rules table, a rules creator can decide to use a vertical
format (as in the examples above where concrete rules go vertically one after

another) or a horizontal format where Condition and Action are located in the

700

OpenRules, Inc. OpenRules® User Manual

rows and the rules themselves go into columns. Here is an example of the proper

horizontal format for the same rules table "helloWorld":

Rules void helloWorld{int hour) /horizontal
Hour From 0 12 18 23
Hour To 11 17 22 24

Greeting Good Morming | Good Afternoon | Good Evening | Good Might

OpenRules® automatically recognizes that a table has a vertical or a horizontal
format. You can use Excel's Copy and Paste Special feature to transpose a rules

table from one format to another.

Note. When a rules table has too many rules (more than you can see on one page)
it 1s better to use the vertical format to avoid Excel's limitations: a worksheet has

a maximum of 65,536 rows but 1t is limited to 256 columns.

Merging Cells

OpenRules® recognizes the powerful Cell Merging mechanism supported by
Excel and other standard table editing tools. Here is an example of a rules table

with merged cells:

Rules void testMerge(String valuel, String value?2)

Rule C1 Cc2 Al A2
valuel.equals(val) value2.equals(val) out("Al: " + text); OUtgeﬁtz):_ -
String val String val String text String text
Name Value Text 1 Text 2
1 One 12
11+21
2 B Two 22
3 31 32
Three
4 D 41 42

The semantics of this table is intuitive and described in the following table:

710

OpenRules, Inc.

Value| Value| Applied Printed
1 2 Rules Results
Al: 11+21
B One 1 A 12
Al: 11+21
B Two 2 AD- 22
Al: 31
B | Three 3 A2 32
Al: 41
D | Three 4 A2 42
A Two none
D Two none

OpenRules® User Manual

Restriction. We added the first column with rules numbers to avoid the known
implementation restriction that the very first column (the first row for horizontal
rules tables) cannot contain merged rows. More examples can be found in the
standard rule project "Merge" - click here to analyze more rules. When you use
the standard decision tables, you may put the standard condition “C#’ or an

action “#” in the very first column and use numbers to mark each table’s row.
Sub-Columns and Sub-Rows for Dynamic Arrays

One table column can consist of several sub-columns (see sub-columns "Min" and
"Max" in the example above). You may efficiently use the Excel merge
mechanism to combine code cells and to present them in the most intuitive way.

Here is an example with an unlimited number of sub-columns:

C6

contains(rates.customer.rate)

String[] rates

AND
Internal Credit Rating
B C D F

720

http://openrules.com/docs/xls/MergeRules.xls
http://openrules.com/docs/man_rules.html#minmaxColumns

OpenRules, Inc. OpenRules® User Manual

As you can see, condition C6 contains 4 sub-columns for different combinations of
rates. The cells in the Condition, code, parameters and display values, rows are
merged. You can insert more sub-columns (use Excel's menu "Insert") to handle
more rate combinations if necessary without any changes in the code. The
parameter row is defined as a String array, String[] rates. The actual values
of the parameters should go from left to right and the first empty value in a sub-
column should indicate the end of the array "rates'. You can see the complete

example in the rules table "Rule Family 212" in the file Loan1.xls.

If your rules table has a horizontal format, you may use multiple sub-rows in a

similar way (see the example in file UpSell.xls).

Using Expressions inside Rules Tables

OpenRules® allows a rules designer to use “almost” natural language expressions
inside rules tables to represent intervals of numbers, strings, dates, etc. You also

may use Java expressions whenever necessary.

Integer and Real Intervals

You may use plain English expressions to define different intervals for integer
and real decision variables inside rules tables. Instead of creating multiple
columns for defining different ranges for integer and real values, a business user
may define from-to intervals in practically unlimited English using such phrases
as: "500-1000", "between 500 and 1000", "Less than 16", "More or equals to 17",
"17 and older", "< 50", ">= 10,000", "70+", "from 9 to 17", "[12;14)", etc.

You also may use many other ways to represent an interval of integers by
specifying their two bounds or sometimes only one bound. Here are some

examples of valid integer intervals:

Cell Expression Comment

5 equals to 5

[5,10] contains 5,6, 7, 8, 9, and 10
5510 contains 5,6, 7, 8, 9, and 10

730

http://openrules.com/docs/xls/Loan1.xls
http://openrules.com/docs/xls/UpSell.xls

OpenRules, Inc. OpenRules® User Manual

[5,10) contains 5, 6,7,8, and 9 (but not 10)

[5..10) The same as [5,10)

5-10 contains 5 and 10

5-10 contains 5 and 10

5- 10 contains 5 and 10

-5-20 contains -5 and 20

5 - -90 error: left bound is greater than the right
one

-5--2 contains -5, -4, -3, -2

from 5 to 20 contains 5 and 20

less 5 does not contain 5

less than 5 does not contain 5

less or equals 5 contains 5

less or equal 5 contains 5

less or equals to 5 contains 5

smaller than 5 does not contain 5

more 10 does not contain 10

more than 10 does not contain 10

10+ more than 10

>10 does not contain 10

>=10 contains 10

between 5 and 10 contains 5 and 10

no less than 10 contains 10

no more than 5 contains 5

equals to 5 equals to 5

greater or equal than 5

and less than 10 contains 5 but not 10

more than 5 less or

equal than 10 does not contain 5 and contains 10

more than 5,111,111

does not contain 5,111,111 and contains
and less or equal than

10,222,222 10,222,222

[5'000;10'000'000) contains 5,000 but not 10,000,000
[5,000;10,000,000) contains 5,000 but not 10,000,000
(5:100,000,000] contains 5,000 and 10,000,000

740©

OpenRules, Inc. OpenRules® User Manual

You may use many other ways to represent integer intervals as you usually do in
plain English. The only limitation is the following: min should always go

before max!

Similarly to integer intervals, one may use the predefined
type FromToDouble to represent intervals of real numbers. The bounds of

double intervals could be integer or real numbers such as [2.7; 3.14).

Comparing Integer and Real Numbers

You may use the predefined type CompareToInt to compare a decision variable

with an integer number that is preceded by a comparison operator. Examples of

acceptable operators:

Cell Expression Comment

<=5 less or equals to 5
<5 strictly less than 5
>5 strictly more than 5
>=5 more or equals to 5

1= not equal to 5

equals to 5.
5 Note that absence of a comparison operator means
equality. You cannot use an explicit operator "=" (not to

be confused with Excel's formulas).

Similarly to CompareToInt one may use the predefined type CompareToDouble

to represent comparisons with real numbers. The comparison values may be
presented as integer or real numbers, e.g. "<=25.4" and "> 0.5".
Using Comparison Operators inside Rule Tables

A user can employ a comparison operators such as "<" for "less" or ">" for "more"
directly inside the rules. There are several ways to accomplish this. Here is an

example from the rules table "Rule Family 212" (Loan1.xls):

750

http://openrules.com/docs/xls/Loan1.xls

OpenRules, Inc. OpenRules® User Manual

C4
op.compare(c.creditCardBalance,
value)
Operator op int value

You may use the Excel Data Validation menu to limit the choice of the operators:

Data Validation JZ2[x

settings | Input Message | Srror Alert |
Allow:
[ust _»] ¥ 1gnore blank
Data: V' In-cell dropdown
Ibetween ;]
Source:
|3.<,<=3===,1= S|

™ apply these changes to all other cells with the same settings

Clear Al oK Cancel

Here the sign "==" has an apostrophe in front to differentiate it from an Excel
formula. The actual implementation of possible comparison operators is
provided as an example 1in the project "com.openrules.tools"
(see com.openrules.tools.Operator.java). You may change them or add
other operators. In addition to values of the type "int" you may also use Operator

to compare long, double, and String types.

76 ©

OpenRules, Inc. OpenRules® User Manual

Comparing Dates

You may use the standard java.util.Date or any other Java Comparable

type. Here 1s an example of comparing Dates:

C1
op.compare(visit.date,date)
Operator op Date date
Operator Date

== 2/15/2007
I= 1/1/2007
<= 2/15/2007
> 2/15/2007
< 2/15/2007

Please note that the current implementation compares dates without time.

Another way to use operators directly inside a table is to use expressions. In the
example above, instead of having two sub-columns "Operator" and "Value" we

could use one column and put an expression inside the cell:

{ c.creditCardBalance <= 0; }

The use of expressions is very convenient when you do not know ahead of time

which operator will be required for which columns.

Comparing Boolean Values

If a parameter type is defined as "boolean", you are allowed to use the following

values inside rule cells:

True, TRUE, Yes, YES
False, FALSE, No, NO

You also may use formulas that produce a Boolean, .e.g.

{ loan.additionalIncomeValidationNeeded; }

770

http://openrules.com/docs/man_rules.html#Using Expressions Inside Decision Tables

OpenRules, Inc. OpenRules® User Manual

Sometimes, you want to indicate that a condition is satisfied or an action should
be executed. You may use any character like X or * without checking its actual
value — the fact that the cell is not empty indicates that the condition is true. For

example, in the following table (from the standard project “VacationDays”)

Rules void DecisionTable(Test t)

C1|t.age >= max int max |Age >= 18 | 18 | 18 | 45 | 45 | 45 | 60
C2|t.age < min int min |Age < 18 | 45 | 45 | 45 [60 | 60 | 60
C3|t.service »>= max | int max |Service >= 25 | 40 25 | 40

C4 |t.service < min int min | Service < 25 | 40 25 | 40

Allt.days = 22 String X |Assign 22 days X X X X X X X X
A2|t.days +=5 String X |5 extra days X

A3|tdays +=2 String X |2 extra days X X X X X X
Ad |t days +=3 String X |3 extra days X X

only actions marked with "X" will be executed. You can use any other character

instead of "X".

Representing String Domains

Let's express a condition that validates if a customer's internal credit score is one
of several acceptable rates such as "A B C" and "D F". To avoid the necessity to
create multiple sub-columns for similar conditions, we may put all possible string
values inside the same cell and separate them by spaces or commas. Here is an

example of such a condition:

Condition

domain.contains(customer.internalCreditRating)

DomainString domain

Internal Credit Rating

ABC
DF
DFG

780©

OpenRules, Inc. OpenRules® User Manual

Here we use the predefined type DomainString that defines a domain of strings
(words) separated by whitespaces. The method "contains (String string)" of
the class DomainString checks if the parameter "string" is found among all
strings listed in the current "domain". You also may use the method
"containsIgnoreCase (String string)" that allows you to ignore case

during the comparison.

If possible values may contain several words, one may use the predefined
type DomainStringC where "C" indicates that commas will be used as a string
separator. For example, we may use DomainStringC to specify a domain such

as "Very Hot, Hot, Warm, Cold, Very Cold".
Representing Domains of Numbers
If you need to represent domains of integer or double values, there are several

predefined types similar to DomainString:

e DomainInt
e DomainIntC
e DomainDouble

e DomainDoubleC

For example, here is a condition column with eligible loan terms:

Condition
domain.contains(c.loanTerm)
DomainIntC domain

Eligible Loan Terms

24,36,72
36,72
72

790

OpenRules, Inc. OpenRules® User Manual

Using Java Expressions

The use of Java expressions provides the powerful ability to perform calculations
and test for complex logical conditions. While the writing of expressions requires
some technical knowledge, it does not require the skills of a programmer. Real-
world experience shows that business analysts frequently have a need to write
these expressions themselves. It is up to the rules table designer to decide
whether to show the expressions to business people or to hide them from view.
Let's consider a decision table for "Income Validation" from the provided

standard example “Loan1”:

Rules void ValidateIncomeRules(LoanRequest loan, Customer customer)

C1l Al
customer.monthlylncome * 0.8 - loan.incomeValidationResult

customer.monthlyDebt > loan.amount/loan.term = result;

boolean condition String result

IE THEN
Income is Sufficient for the Loan S e el Gl
Result
No UNSUFFICIENT
Yes SUFFICIENT

Here the actual income validation expression is hidden from business people inside "gray"
technical rows, and a business person would only be able to choose between "Yes" or "No".

However, the same table could be presented in this way:

Rules void ValidateIncomeRules(LoanRequest loan, Customer customer)

C1 Al
e loan.incomeValidationResult
condition == true _)
= result;
boolean condition String result
I THEN
. Set Income Validation
Condition is True Result

UNSUFFICIENT

:= customer.monthlylncome * 0.8 -

customer.monthlyDebt > loan.amount/loan.term SUFFICIENT

80 ©

OpenRules, Inc. OpenRules® User Manual

Now, a user can both see and change the actual income validation condition.
Notes:

e Do not use Excel's formulas if you want the content to be recognized by
the OpenRules® engine: use OpenRules® expressions instead.
e If you want to start your cell with "=" you have to put an apostrophe in

front of it 1.e. '= to direct Excel not to attempt to interpret it as a formula.

Expanding and Customizing Predefined Types

All the predefined types mentioned above are implemented in the Java
package com.openrules.types. You may get the source code of this package
and expand and/or customize the proper classes. In particular, for
internationalization purposes you may translate the English key words into your
preferred language. You may change the default assumptions about
inclusion/exclusion of bounds inside integer and real intervals. You may add

new types of intervals and domains.

Performance Considerations

The use of expressions inside OpenRules® tables comes with some performance
price - mainly during OpenRulesEngine initialization. This is understandable
because for every cell with an expression OpenRules® will create a separate
instance of the proper Java class. However, having multiple representation
options allows arule designer to find a reasonable compromise between

performance and expressiveness.

RULES TEMPLATES

OpenRules® provides a powerful yet intuitive mechanism for compactly
organizing enterprise-level business rules repositories. Rules templates allow
rule designers to write the rules logic once and use it many times. With rules
templates you may completely hide rules implementation details from business

users. OpenRules® supports several rules templatization mechanisms from

810

OpenRules, Inc. OpenRules® User Manual

simple rules tables that inherit the exact structure of templates to partial

template implementations.

Simple Rules Templates

Rule templates are regular rules tables that serve as structural prototypes for
many other rules tables with the same structure but different content (rules). A
simple rules template usually does not have rules at all but only specifies the
table structure and implementation details for conditions and actions. Thus, a
simple rules template contains the first 5 rows of a regular decision table as in

the following example:

Signature with

Rules void defineGreeting (App app, int hour)

parameters
c1 Al _Cond_lt_lons and Actions

identifiers

min <= hour && hour <= app.greeting = Java _snlppets_descnbe

S condition/action
max greeting;)
semantics
int min int max String greeting Parameter types and

names

Hour From Hour To Set Greeting B“S"_"?SS Names fo_r
conditions and actions

We may use this rules table as a template to define different greeting rules for
summer and winter time. The actual decision tables

will implement (or extend) the template table with particular rules:

Rules summerGreeting template defineGreeting

:;Irc:)lirr] Hour To Set Greeting
0 10 Good Morning
11 18 Good Afternoon
19 22 Good Evening
23 24 Good Night

and

820©

OpenRules, Inc.

OpenRules® User Manual

Rules winterGreeting template defineGreeting

:;Ircg#; Hour To Set Greeting
0 11 Good Morning
12 17 Good Afternoon
18 22 Good Evening
23 24 Good Night

Note that rules tables "summerGreeting" and "winterGreeting" do not have

technical information at all - Java snippets and a signature are defined only once

and reside in the template-table "defineGreeting".

Along with the keyword "template" you may use other keywords:

e implements

implement

extends

extend

We will refer to these rules tables created based on a template as "template

Implementations'’.

Simple templates require that the extended tables should have exactly the same

condition and action columns.

Defining Rules based on Templates

When many rules tables are created based on the same rules template, it could

be inconvenient to keep the same default rules in all extended tables. As an

alternative you may add the rules tables based on the same template. The

location of the default rules depends on the types of your rules tables.

Templates for Single-Hit Rule Tables

Single-hit rules tables usually end their execution when at least one rules is

satisfied. However, when conditions in all specified rules are not satisfied then a

single-hit table usually uses the last rule(s) to specify the default action(s). The

830©

OpenRules, Inc. OpenRules® User Manual
rules from the template will be executed after the actual rules defined inside

the template implementation.

Let's consider an example. We have shown that without modification, the rules
tables above would not produce any greeting if the parameter "hour" is outside of

the interval [0;24]. Instead of adding the same error message in both "summer"

and "winter" rules, we could do the following:

make our "defineGreeting" template a single-hit table by changing a return

type from "void" to "String"

- add the default reaction to the error in "hour" directly to the template:

Rules

defineGreeting(App app, int hour)

C1

Al

min <= hour &&

app.greeting =

ERROR: Invalid Hour

Signature now returns
String

Conditions and Actions
1dentifiers

"return greeting;" has been

hour <= max greeting; return greeting; added
int min int max String greeting Parameter types and names
Hour . ;
Hour To Set Greeting Business names for
From conditions and actions

This rule will be added at
the end of all template
implementations tables. The
error message will be return
instead of a greeting when
all other rules fail.

A template for single-hit tables could include more than one rule with different
conditions - they all will be added at the end of the template

implementation tables to execute different default actions.

Templates for Multi-Hit Rule Tables

Multi-hit rules tables execute all their rules that are satisfied, allowing rules

overrides. However, when conditions in all specified rules are not satisfied then a
multi-hit table usually uses the first (!) rules to specify the default action. The
rules from the template will be executed before the actual rules defined inside

the extended tables.

84 ©

http://openrules.com/docs/man_rules.html#Multi-Hit and Single-Hit Decision Tables
http://openrules.com/docs/man_rules.html#Multi-Hit and Single-Hit Decision Tables

OpenRules, Inc. OpenRules® User Manual

Let's consider an example. You may notice that the rules tables above would not
produce any greeting if the parameter "hour" is outside of the interval [0;24].
Let's assume that in this case we want to always produce the default greeting

"How are you". To do this, simply add one default rule directly to the template:

Rules void defineGreeting (App app, int hour)

C1 Al
min <= hour && . .
app.greeting = greeting;
hour <= max PP-9 9=9 g
int min int max String greeting
This rule will be added at
the beginning of all
How are vou template implementations.
Y This greeting will be
produced if all other rules
in the rules tables fail

A template for multi-hit tables could include more than one default rule each
with different conditions - they all will be added to the beginning of the template

implementation tables and will execute different default actions.

Partial Template Implementation

Usually template implementation tables have exactly the same structure as the
rules templates they extend. However, sometimes it is more convenient to build
your own rules table that contains only some conditions and actions from already
predefined rules templates. This is especially important when a library of rules
templates for a certain type of business is used to create a concrete rules-based

application. How can this be achieved?

The template implementation table uses its second row to specify the names of
the used conditions and actions from the template. Let's consider an example.
The DebtResearchRules from the standard OpenRules® example "Loan

Origination" may be used as the following template:

85 ©

OpenRules, Inc. OpenRules® User Manual

Rules void DebtResearchRules(LoanRequest loan, Customer c)

C1 C2 C3 C4 C5 C6 C7 Al

contains(r |c.internalA|loan.debt
ates,c.inte |nalystOpin[Research

c.outsideCredit

GO, Score>min &&

c.loanHol| op.compare(c. |op.compare(c.e

eHolder.eq c.outsideCredit der.equal | creditCardBala|ducationLoanBa malCredit lion.equals [Result =
uals(YN) . _ s(YN) nce,value) lance,value) : €q T
Score<=max Rating) [(level) level;
String YN | int min int String YN Opera int |Operat el String(] String String
max tor op| value | orop rates level level
AND

AND AND . THEN

IF Outside AND | Credit Card Fducation| AND | AND | Debt
Mortgage | Credit Score Loan Balance Balance Credit | Analyst Research
Holder Holder Rating Opin?/on Recomme,
Min | Max Oper | Value | Oper | Value ndations

We may create a rules table that implements this template using only conditions

C1, C2, C5, C6 and the action Al:

Rule DebtResea Rules template DebtResea Rule
C1 Cc2 C5 C6 Al
AND AND THEN
IF Outside Credit| Education Loan Debt
Mortgage Score Balance | AND. . Research
nternal Credit Rating
Holder Min Max Oper Value Reco_mmen
dations
ves | High
No 100 550 High
No 550 900 Mid
No 550 900 > 0 High
No 550 900 <= 0 A B C High
No 550 900 <= 0 D F Mid
No 550 900 Low
No 550 900 <= 0 Low
No 550 900 > 0 D F High
No 550 900 > 0 A B C Low

The additional second row specifies which conditions and actions from the
original template are selected by this rules table. The order of conditions and
actions may be different from the one defined in the template. Only names like
"C2", "C6", and "A1" should be the same in the template and in its

implementation. It is preferable to use unique names for conditions and actions

86 ©

OpenRules, Inc. OpenRules® User Manual

inside templates. If there are duplicate names inside templates the first one
(from left to right) will be selected. You may create several columns using the

same condition and/or action names.

Templates with Optional Conditions and Actions

There is another way to use optional conditions and actions from the templates.
If the majority of the template implementations do not use a certain condition
from the template, then this condition may be explicitly marked as optional by
putting the condition name in brackets, e.g. "[C3]" or "[Conditon-5]". In this
case it 1s not necessary to use the second row to specify the selected conditions in
the majority of the extended tables. For example, let's modify the
DebtResearchRules template making the conditions C3, C4, and C7 optional:

Rules void DebtResearchRules(LoanRequest loan, Customer c)

c1 c2 | [c31 | [ca| c5 | ce | [c71| A1

Now we can implement this template as the following rules table without the

necessity to name all of the conditions and actions in the second row:

Rules MyDebtResearchRules template DebtResearchRules
AND

i AND
Mo:r a O(;thes(;(ijte Education Loan AND
der Balance Internal Credit Rating

e Holder| Score

Min| Max | Oper | Value

High
No 100| 550 High
No 550| 900 Mid
High
High

Mid
Low
Low
High

Low

87©

OpenRules, Inc. OpenRules® User Manual

However, a template implementation that does want to use optional conditions

will have to specify them explicitly using the second row:

Rule DebtResearchRules template DebtResearchRule
C1l C2 C3 C4 C5 C6 Al
AND AND AND
IF Outside AND | cCredit Card | Education AND
Mortgagd | Credit Score| Loan Balance [Loan Balance| Internal Credit
e Holder - Holder Rating
Min | Max Oper | Value | Oper |Value
| Yes | High
No | 100 | 550 High
No 550 | 900 Yes <= 0 Mid
High
High
Mid
No 550 | 900 No > 0 Low

Similarly, optional actions may be marked as [A1]" or "[Action3]".

Implementation Notes:

o Rule templates are supported for both vertical and horizontal rules tables.

o The keywords "extends" or "implements" may be used instead of the keyword
"template"

o Template implementations cannot be used as templates themselves.

Templates for the Default Decision Tables

All standard decision and decision tables are implemented using rules templates.
The rules tables of the type “DecisionTable” are implemented using several
templates located in the following files inside the configuration project
“openrules.config”:

DecisionTemplates.xls

DecisionTableExecuteTemplates.xls

Decision Templates

The file DecisionTemplates.xls contains the following rules templates and

methods:

88 ©

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRules® User Manual

- DecisionTemplate (Decision decision): a template for the tables of type
“Decision”

- initializeDecision (Decision decision): the method that initializes the
current decision

- initializeDecisionRun (Decision decision): the method that initializes
the current decision’s run

- DecisionObjectTemplate (Decision decision): atemplate for the table of
the type “DecisionObject”

- GlossaryTemplate (Decision decision): a template for the table of type
“Glossary”

- the Environment table that includes the following references:

o DecisionTable${OPENRULES MODE}Templates.xls: where
${OPENRULES MODE} isan environment variable that has one of the
following values:

= Execute — the default value for Decision Table execution templates
= Solve — for execution of decision models using OpenRules Rule

Solver.

The template “DecisionTemplate” contains two mandatory action columns with
names “ActionPrint” and “ActionExecute” and three optional columns with the
names “Condition”, “ConditionAny”, and “ActionAny”. Here is an example of this

template:

RuleSet nTen

D nTem n)
[Condition] [ConditionAny] [ActionAny]

Decision Variable | Dynamic Condition Decisions Execute Decision or Table Any Message

Because you can use the same column “Condition” or “ConditionAny” many times
in your own decision and sub-decision tables, you may create tables of type

“Decision” that are based on this template with virtually unlimited complexity.

89O

http://openrules.com/rulesolver.htm
http://openrules.com/rulesolver.htm

OpenRules, Inc. OpenRules® User Manual

Decision Execution Templates

The file DecisionTableExecuteTemplates.xls contains the following rules templates for

execution of different types of the decision tables:

- DecisionTableTemplate (Decision decision): a template for execution of
the single-hit tables of the type “DecisionTable”

- DecisionTablelTemplate (Decision decision): atemplate for execution of
the multi-hit tables of the type “DecisionTablel”

- DecisionTable2Template (Decision decision):atemplate for execution of
the rule sequence tables of the type “DecisionTable2”

- customInitializeDecision (Decision decision): the method that can be
used for custom initialization of decisions

- customInitializeDecisionRun (Decision decision):the method that can
be used for initialization of custom objects for every decision run

- finalizeDecision (Decision decision): the method that can be used for

finalization of decision runs

The template “DecisionTableTemplate” serves as a template for all standard

single-hit decision tables. All columns in this template are conditional meaning

their names are always required. Here is an example of the first two rows of this

template with several typical columns:

Rules String DecisionTableTemplate(Decision decision)
[Condition] [ConditionAny] [If] [Conclusion] [Action] [ActionAny] | [Then] | [Message]

The actual DecisionTable template is being upgraded with new OpenRules
release and is much larger. Please look at the latest this and other decision table

templates in the file “openrules.config/ DecisionTableExecuteTemplates.xls”.

The template “DecisionTable1Template” serves as a template for all decision

tables of type “DecisionTablel”. Here is an example the first two rows of this

template:

Rules void DecisionTablelTemplate(Decision decision)
[Condition] | [ConditionAny] [If] [Conclusion] | [Action] | [ActionAny] | [Then] | [Message]

90 ©

OpenRules, Inc. OpenRules® User Manual

The template “DecisionTable2Template” serves as a template for all decision

tables of type “DecisionTable2”. Here is an example the first two rows of this

template:

RuleSequence void DecisionTable2Template(Decision decision)
[Condition] | [ConditionAny] [If] [Conclusion] | [Action] | [ActionAny] | [Then] | [Message]

You can use all these columns as many times as you wish when you may create
concrete decision tables based on these templates. Please check the file
“DecisionTableExecuteTemplates.xls” in your standard configuration project

“openrules.config” to see the latest version of the decision table templates.

Template Customization

Customizing Default Decision Tables

A user may move the above files from “openrules.config” to different locations
and modify the decision table templates (and possible other templates). For
example, to have different types of messaging inside a custom decision, a user

may add two more columns to the template “DecisionTableTemplate”:

- Warning: similar to Message but can use a different log for warning only

- Errors: similar to Message but can use a different log for errors only.

Adding Custom Decision Tables

Users may add their own decision tables with conditions and actions specific to
their applications by defining their own keywords by simply extending the
keyword "DecisionTable" with they own identifier. For example, a user may add
a new decision table type called "DecisionTableMy" by defining the proper
custom conditions and actions inside a template with the name
"DecisionTableMyTemplate". The standard installation includes a project
"DecisionCustom" that demonstrates a custom decision table called
"DecisionTableCustom" created based on a project-specific template
"DecisionTableCustomTemplate". This template is placed in the project file

"DecisionTableCustomTemplates.xls".

910

OpenRules, Inc. OpenRules® User Manual

Adding Custom Methods to Decision and Decision Runs

The file "DecisionTemplates.xls" contains the default methods:

customInitializeDecision

customInitializeDecisionRun

that may be replaced by your own methods. For example, rewriting the method
“customInitializeDecision® allows a user to initialize custom objects.
These and other methods are described below. For a good example of
customization look at the file "DecisionTableSolveTemplates.xls" that is used by
Rule Solver instead of the file "DecisionTableExecuteTemplates.xls". Contact

support@openrules.com if you need help with more complex customization of the

decision templates.

DATA MODELING

OpenRules® includes an ability to define new data/object types and creates the
objects of these types directly in Excel. It allows business analysts to do Rule
Harvesting by defining business terms and facts without worrying about their
implementation in Java, C#, or XML. It also provides the ability to test the
business rules in a pre-integrated mode. To do standalone rule testing, a
designer of rules and forms specifies his/her own data/object types as Excel
tables and creates instances of objects of these types passing them to the rules

tables. We describe how to do it in the sections below.

There is one more important reason why a business or even a technical specialist
may need data modeling abilities without knowing complex software
development techniques. In accordance with the SOA principle of loosely coupled
services, rule services have to specify what they actually need from the objects
defined in an external environment. For example, if an object "Insured" includes
attributes related to a person's military services, it does not require that all
business rules that deal with the insured be interested in those attributes. Such

encapsulation of only the essential information in the Excel-based data types,

920

http://openrules.com/rulesolver.htm
mailto:support@openrules.com
http://www.service-architecture.com/

OpenRules, Inc. OpenRules® User Manual

together with live process modeling, allows OpenRules® to complete the rule

modeling cycle without leaving Excel.

OpenRules® provides the means to make business rules and forms independent
of a concrete implementation of such concepts. The business logic expressed in
the decision tables should not depend on the implementation of the objects these
rules are dealing with. For example, if a rule says: “If driver's age is less than 17
then reject the application” the only thing this business rule should "know" about
the object “driver” is the fact that it has a property “age” and this property has a
type that support a comparison operator “<” with an integer. It is a question of
configuration whether the Driver is a Java class or an XML file or a DB table
from a legacy system. Similarly, if a form has an input field "Driver's Age", the
form should be able to accept a user's input into this field and automatically
convert it into the proper object associated with this field independently of how

this object was implemented.

Thus, OpenRules® supports data source independent business rules (decision
tables) and web forms. Your business rules can work with an object of type
Customer independently of the fact that this type is defined as a Java class, as
an XML file or as an Excel table. You can see how it can be done using examples
HelloJava, HelloXML, and HelloRules from the OpenRules®s standard
installation. It is a good practice to start with Excel-based data types. Even if you
later on switch to Java classes of other data types, you would always be able to

reuse Excel-based types for standalone testing of your rules-based applications.

Datatype and Data Tables

OpenRules® allows a non-technical user to represent different data types directly in Excel and
to define objects of these types to be used as test data. Actually, it provides the ability to
create Excel-based Data Models, which, in turn, define problem specific business terms and
facts. At the same time, a data model can include data types specified outside Excel, for
example in Java classes or in XML files. Here is an example of a simple data type

"PersonalInfo":

930

OpenRules, Inc.

Datatype Personallnfo

String id

String firstName
String middlelnitial
String lastMame
String address
String appartrment
String city

String state
String zipCode

OpenRules® User Manual

Now we can create several objects of this type "PersonalInfo" using the following data

table:

Data Personallnfo personallnformation

id D He She
firsthame First Name John Mary
middlelnitial Middle Initial M. A
lastMame Last Mame Smith Smith
address Address 25 Maple Street

appartment appartment Apt. 3C

city City Edison

state State MJ

zipCode ZipCode (08840

We can reference to these objects inside rules or forms as in the following snippets:

out (personalInformation["He"].lastName) ;

if (personallInformation["She"].state.equals ("NJ"))

You may use one datatype (such as PersonalInfo) to define a more complex aggregate

datatype, like TaxReturn in this example:

94 ©

OpenRules, Inc. OpenRules® User Manual

Datatype TaxReturn

Personalinfo taxPayer

Personallnfo spouse

boolean marriedFillingJointly

boolean claimedAsDependent
boolean spouseClaimedAsDependent
double wages

double taxablelnterest

double unemploymentCompensation
double adjustedGrossincome

double dependentAmount

double taxablelncome

double taxWithheld

double earnedincomeCredit

double totalPayments

double tax

double refund

You may even create an object of the new composite type "TaxReturn" using references to

the objects "He" and "She" as in this example:

Data TaxReturn taxReturns

taxPayer Spouse wages Exablelntere taxWithheld |earnedincomeCredit

=personallnformation |=personallnformation

Taxable ! Earned Income
TaxPayer Spouse Wages i Tax Withheld Credit

He She 32026 1450 4530 230

Now we can reference these objects from inside rules or forms as in the following snippet:
out (taxReturn[0].taxPayer.lastName) ;

The above tables may remind you of traditional database tables simply presented in Excel.
While these examples give you an intuitive understanding of OpenRules® Datatype and Data

tables, the next sections will provide their formal descriptions.

95 ©

OpenRules, Inc. OpenRules® User Manual

You may use a type of table "Variable". These tables are similar to the Data tables but
instead of arrays of variables they allow you to create separate instances of objects directly in

Excel files. Here is a simple example:

Variable Customer mary

name age gender maritalStatus
Name Age Gender Marital Status
Mary Brown 5 Female Single

The variable "mary" has type Customer and can be used inside rules or passed back from an
OpenRulesEngine to a Java program as a regular Java object. As usual, the object type

Customer can be defined as a Java class, an Excel Datatype, or an xml structure.

How Datatype Tables Are Organized

Every Datatype table has the following structure:

Datatype tableName

AttributeTypel AttrubuteNamel
AttributeType2 AttrubuteName2

The first "signature" row consists of two merged cells and starts with the
keyword "Datatype". The "tableName" could be any valid one word identifier of
the table (a combination of letters and numbers). The rows below consist of two
cells with an attribute type and an attribute name. Attribute types can be the

basic Java types:

boolean

char

int

double

long

String (java.lang.String)

Date (java.util.Date)

96 ©

OpenRules, Inc. OpenRules® User Manual

You may also use data types defined:

in other Excel Datatype tables
in any Java class with a public constructor with a single parameter of the type String

as one-dimensional arrays of the above types.

The datatype "Personallnfo" gives an example of a very simple datatype. We can

define another datatype for a social security number (SSN):

Datatype SSN

String s5n
String 55n2
String ssn3

and add a new attribute of this type to the datatype "Personallnfo":

Datatype Personallnfo

String id

String firsthame
String middlelnitial
String lastName
String address
String appartment
String city

String state
String zipCode
SSM 55N

It is interesting that these changes do not affect the already existing data
objects defined above (like personalInformation["He"]) - their SSNs just

will not be defined.

Implementation Restriction. Make sure that the very first attribute in a

Datatype table has type String or your own type but not a basic Java type like

int.

The following example demonstrates how to create a Data table for a Datatype

that includes one-dimensional arrays:

97 ©

OpenRules, Inc. OpenRules® User Manual

Datatype Order

String number
String[] selectedltems
String(] offeredltems
double totalAmount
String status

Here is an example of the proper Data table:

Data Order orders

number selectedltems |totalAmount| status
Number Selected Items Total Status
Amount

INTRS-PGS394
6P-U01 INTRS-PGS456 3700 In Progress
Paste-ARMC-2150

You may also present the same data in the following way:

Data Order orders
number selectedltems totalAmount
Selected Items
Number ltem 1 ltem 2 ltem 3 Total Amount
INTRS- INTRS- Paste-ARMC-
6P-U0l| pGs304 PGS456 2150 3700

Every Datatype table has a vertical or horizontal format. A typical vertical Data table has the

following structure:

Data datatypeName tableName
AttributeNamel | AttributeName2 | AttributeName3
from from from
"datatypeName" | "datatypeName" | "datatypeName"

98 ©

OpenRules, Inc.

OpenRules® User Manual

Display value of

Display value of

Display value of

the the the
AttributeNamel | AttributeName?2 | AttributeName3

data data data

data data data

The first "signature" row consists of two merged cells and starts with the
keyword "Data". The next word should correspond to a known datatype: it can be
an already defined Excel Datatype table or a known Java class or an XML file.
The "tableName" is any one word valid identifier of the table (a combination of

letters and numbers).

The second row can consists of cells that correspond to attribute names in the
data type "datatypeName". It is not necessary to define all attributes, but at

least one should be defined. The order of the columns is not important.

The third row contains the display name of each attribute (you may use

unlimited natural language).

All following rows contain data values with types that correspond to the types of

the column attributes.

Here is an example of the Data table for the datatype "PersonalInfo" defined

in the previous section (with added SSN):

Data Personallnfo personallnformation

id firstName middlelnitial lastMame 5sn.55n1 55N.55N2 55n.55N3
D First Mame Middle Initial Last Mame |SSN1 S5MN2 S5M3

He John M. Smith 164 86 2298
She Mary A Smith 627 35 1293

The table name is "personalInformation" and it defines an array of objects of
the type PersonallInfo. The array shown consists only of two elements
personalInformation[0] for John and personalInformation[1] for Mary.

You may add as many data rows as necessary.

99 ©

OpenRules, Inc. OpenRules® User Manual

The attributes after the SSN attribute have not been defined. Please, note that
the references to the aggregated data types are defined in a natural way

(ssn.ssnl, ssn.ssn2, ssn.ssn3) using the dot-convention.

As you can see from this example, the vertical format may not be very convenient

when there are many attributes and not so many data rows. In this case, it could

be preferable to use a horizontal format for the data tables:

Data datatypeName tableName

AttributeNamel | Display value of the dataldatal data
from "datatypeName"| AttributeNamel
AttributeName2 from| Display value of the
"datatypeName" AttributeName2 data data|data
AttributeName3 from| Display value of the
"datatypeName™ AttributeName3 data data| data

Here is how our data table will look when presented in the horizontal format:

Data Personallnfo personallnformation

id D He She
firsthlame First Mame John Mary
middlelnitial Middle Initial M. A
lastName Last Name Smith Smith
ssn.ssnl SSN1 164 627
55n.55n2 S5N2 86 35
55n.55n3 SSN3 2295 1293
address Address 25 Maple Street

appartment appartment Apt. 3C

city City Edison

state State MJ

zipCode ZipCode f08840

Predefined Datatypes

OpenRules® provides predefined Java classes to create data tables for arrays of

integers, doubles, and strings. The list of predefined arrays includes:

1. ArrayInt - for arrays of integer numbers, e.g.:

100 ©

OpenRules, Inc.

Method int[] getTerms()
return Arraylnt.getValues(terms);

Data Arrayint terms

value

Term

36

72

108

144

2. ArrayDouble - for arrays of real numbers, e.g.:

Method double[] getCosts()

return ArrayDouble.getValues(costs);

Data ArrayDouble costs

value

Costs

$295.50

$550.00

$1,000.00

$2,000.00

$3,295.00

$5,595.00

$8,895.00

3. ArrayString - for arrays of strings, e.g.:

Method String[] getRegions()
return ArrayString.getValues(regions);

Data ArrayString regions
value

Region

NORTHEAST

MID-ATLANTIC

SOUTHERN

MIDWEST

MOUNTAIN

PACIFIC-COAST

OpenRules® User Manual

101 ©

OpenRules, Inc. OpenRules® User Manual

These arrays are available from inside an OpenRules® table by just calling their
names: getTerms(), getCosts(), getRegions(). You may also access these

arrays from a Java program, using this code:

OpenRulesEngine engine =
new OpenRulesEngine ("file:rules/Data.xls");
int[] terms = (int[])engine.run("getTerms");

The standard installation includes a sample project "DataArrays", that shows

how to deal with predefined arrays.

How to Define Data for Aggregated Datatypes

When one Datatype includes attributes of another Datatype, such datatypes are
usually known as aggregated datatypes. You have already seen an example of an
aggregated type, PersonalInfo, with the subtype SSN. Similarly, you may
have two datatypes, Person and Address, where type Person has an attribute
"address" of the type Address. You may create a data table with type Person
using aggregated field names such as "address.street", "address.city",
"address.state", etc. The subtype chain may have any length, for example
"address.zip.first5" or "address.zip.last4". This feature very
conveniently allows a compact definition of test data for complex interrelated

structures.

Finding Data Elements Using Primary Keys

You may think about a data table as a database table. There are a few things
that make them different from traditional relational tables, but they are
friendlier and easier to use in an object-oriented environment. The very first
attribute in a data table is considered to be its primary key. For example, the
attribute "id" is a primary key in the data table "personallnformation" above.
You may use values like "He" or "She" to refer to the proper elements of this
table/array. For example, to print the full name of the person found in the array

"personallnformation", you may write the following snippet:

102©

OpenRules, Inc.

OpenRules® User Manual

PersonallInfo pi = personallInformation["He"];

out (pi.fisrtName + "

+ pi.lastName) ;

"o+ pl.mlddeInltlal + m,om

Cross-References Between Data Tables

The primary key of one data table could serve as a foreign key in another table
thus providing a cross-reference mechanism between the data tables. There is a

special format for data tables to support cross-references:

Data datatypeName tableName

AttributeNamel from A““b]ij NI AttributeName3 from
"datatypeName™ fom "datatypeName"
"datatypeName"
>referencedDataTablel >referencedDataTable2
Display value of the D'S%?i/h\éalue Display value of the
AttributeNamel AttributeName2 AttributeName3
data data data
data data data

This format adds one more row, in which you may add references to the other
data tables, where the data entered into these columns should reside. The sign
">" is a special character that defines the reference, and "referencedDataTable"

is the name of another known data table. Here is an example:

Data TaxReturn taxReturns

taxPayer Spouse wages Exablelntere taxWWithheld |eamedincomeCredit
=personallnformation |=personallnformation
Taxable ! Earned Income
TaxPayer Spouse Wages i Tax Withheld Credit
He She 32026 1450 4530 230
Both columns "TaxPayer" and "Spouse" use the reference

">personallnformation". It means that these columns may include only primary

keys from the table, "personallnformation". In our example there are only two

103©

OpenRules, Inc.

OpenRules® User Manual

valid keys, He or She. If you enter something else, for example "John" instead of

"He" and save your Excel file, you will receive a compile time (!) error "Index Key

John not found" (it will be displayed in your Eclipse Problems windows). It is

extremely important that the cross-references are automatically validated at

compile time in order to prevent much more serious problems at run-time.

Multiple examples of complex inter-table relationships are provided in the

sample rule project AutoInsurance. Here is an intuitive example of three related

data tables:

Data Driver drivers

name age gender maritalStatus dmvPoints
Name Age Gender I'I.;antal DMV Points
tatus
John Smith 24 Male Single 2
Mary Smith 19 Female Single 0

Data Vehicle vehicles

id make model wear hasAbs

1D Make Model Year Has ABS
Weh 1 Missan Maxima 2000 TRUE
Veh 2 Toyota Corrola 1999 FALSE

Data Usage usages

driver vehicle usage
= drivers =vehicles
Driver Vehicle Usage(%)
John Smith Weh 1 100
Mary Smith Veh 2 100

See more complex examples in the standard project “Autolnsurance”.

To represent business rules

OPENRULES® REPOSITORY

OpenRules®

utilizes a popular spreadsheet

mechanism and places rules in regular Excel files. OpenRules® allows users to

build enterprise-level rules repositories as hierarchies of inter-related xls-files.

104 ©

OpenRules, Inc. OpenRules® User Manual

The OpenRules® Engine may access these rules files directly whether they are
located in the local file system, on a remote server, in a standard version control

system or in a relational database.

Logical and Physical Repositories

The following picture shows the logical organization of an OpenRules® repository

and its possible physical implementations:

Physical Rule Repositories

file: .
Logical Rule Repository classpath: . Local File System
' [e |
x Rate 1 : http: : Remote
Workbooks '3‘ _ Application
. Decision Tablss, | = fip: Servers
 Rulz Templatzs, - g N
{1 DataModsling, =
Ruls Tasts, - g
Fo:::ne%zjz;ts 8 J‘ 5 htep: | Version Control
70 T Repositories
(Subversion/CVS)
b:
External|Rules g
dbv:

Logically, OpenRules® Repository may be considered as a hierarchy of rule
workbooks. Each rule workbook is comprised of one or more worksheets that can
be used to separate information by types or categories. Decision tables are the
most typical OpenRules® tables and are used to represent business rules. Along
with rules tables, OpenRules® supports tables of other types such as: Form
Layouts, Data and Datatypes, Methods, and Environment tables. A detailed

description of OpenRules® tables can be found here.

105©

http://openrules.com/docs/man_spreadsheets.html

OpenRules, Inc. OpenRules® User Manual

Physically, all workbooks are saved in well-established formats, namely as
standard xls- or xml-files. The proper Excel files may reside in the local file
system, on remote application servers, in a version control system such as

Subversion, or inside a standard database management system.

OpenRules® uses an URL pseudo-protocol notation with prefixes such

as "file:", "classpath:", "http://", "ftp://", "db:", etc.

Hierarchies of Rule Workbooks

An OpenRules® repository usually consists of multiple Excel workbooks
distributed between different subdirectories. Each rule workbook may include
references to other workbooks thus comprising complex hierarchies of inter-

related workbooks and rules tables.

Included Workbooks

Rules workbooks refer to other workbooks using so called "includes" inside the
OpenRules® "Environment" tables. To let OpenRules® know about such include-
relationships, you have to place references to all included xlIs-files into the table
"Environment". Here is an example of an OpenRules® repository that comes

with the standard sample project "RuleRepository":

Bl rules The main xIs-file "Main.xlIs" is located in the local directory
E-i= CategoryA "rules/main”. To invoke any rules associated with this file,
B3 SubCategoryA1 the proper Java program creates an OpenRulesEngine using
% RulesA11.xs a string "file:rules/main/Main.xls" as a parameter.
) Rulssh Lo There are many other xIs-files related to the Main.xIs and
3 fdesAt located in different subdirectories of "rules”. Here is a
28] RulesA2.xls £ f the Main.xIs "Envi i table-
B R ragment of the Main.xls "Environment" table:
- .3€) RulesB1.xIs _./CategoryA/RulesA1 xls
38 RulesB2.xls ../CategoryA/RulesA2 xls
&1 Common e ../CategoryB/RulesB1 xls
B libA _/CategoryB/RulesB2 xls
28] libRulesX.xls _/Common/libA/libRulesX xls
.- 28] libRulesY. xls _/Common/libA/libRulesY xls
= main
"

106 ©

OpenRules, Inc. OpenRules® User Manual

As you can guess, in this instance all included files are defined relative to the
directory "rules/main" in which “Main.xls” resides. You may notice that files
“RulesA11.xls” and “RulesA12.xls” are not included. The reason for this is that
only “RulesAl.xls” really "cares" about these files. Naturally its own table

"Environment" contains the proper "include":

Environment

import_java myjava.packAl*
SubCategoryA1/RulesA11 xls
SubCategoryA1/RulesA12 xls

include

Here, both "includes" are defined relative to the directory "CategoryA" of their
"parent" file “RulesAl.xls”. As an alternative, you may define your included files

relative to a so called "include.path" - see sample in the next section.

Include Path and Common Libraries of Rule Workbooks

Includes provide a convenient mechanism to create libraries of frequently used
xls-files and refer to them from different rule repositories. You can keep these
libraries in a file system with a fixed "include.path". You may even decide to
move such libraries with common xls-files from your local file system to a remote
server. For instance, in our example above you could move a subdirectory "libA"
with all xls-files to a new location with an http

address http://localhost:8080/my.common.lib. In this case, you should first define

a so-called "include.path" and then refer to the xls-files relative to this

include.path using angle brackets as shown below:

include path http-//localhost 8080/my commen lib/ |
<libA/libRulesX xls>

<libA/libRulesX xls>

include

Here we want to summarize the following important points:

The structure of your rule repository can be presented naturally inside xlIs-
files themselves using "includes"

The rule repository can include files from different physical locations

107©

http://localhost:8080/my.common.lib

OpenRules, Inc. OpenRules® User Manual

Complex branches on the rules tree can encapsulate knowledge about their

own organization.

Using Regular Expressions in the Names of Included Files

Large rule repositories may contain many files (workbooks) and it is not
convenient to list all of them by name. In this case you may use regular
expression inside included file names within the Environment table. For

example, consider in the following Environment table:

Environment

include ./categoryl/*.xls
include ../category2/XYZ*.xls
include ../category3/A?.xls

The first line will include all files with an extension “xls” from the folder
“categoryl”. The second line will include all files with an extension “xls” and
which names start with “XYZ” from the folder “category2”. The third line will
include all files with an extension “xls” that start with a letter “A” following

exactly one character from the folder “categoryl”.

73]

Actually along with wildcard characters or “?” you may use any standard

regular expressions to define the entire path to different workbooks.

Imports from Java

OpenRules® allows you to externalize business logic into xls-files. However,
these files still can use objects and methods defined in your Java environment.
For example, in the standard example “RulesRepository” all rules tables deal
with Java objects defined in the Java package myjava.packagel. Therefore, the
proper Environment table inside file Main.xls (see above) contains a property

"Import.java" with value "myjava.packagel.*".

108 ©

http://docs.oracle.com/javase/tutorial/essential/regex/char_classes.html

OpenRules, Inc. OpenRules® User Manual

Usually, you only place common Java imports inside the main xls-file. If some
included xls-files use special Java classes you can reference them directly from

inside their own Environment tables.

Imports from XML

Along with Java, OpenRules® allows you to use objects defined in XML files. For
example, the standard sample project “HelloXMLCustomer” uses an object of the

type, Customer, defined in the file Customer.xml located in the project classpath:

<Customer
name="Robinson"
gender="Female"
maritalStatus="Married"
age="55"

/>

The xlIs-file “HelloCustomer.xls” that deals with this object includes the following

Environment table:

Environment

import_static com.openrules tools. Methods
import.schema classpath:/Customer.xml|
import java hello.Response

include include/HelloRules xls

The property "import.schema" gpecifies the location of the proper xml-file, in
this case "classpath:/Customer.xml" Of course, it could be any other
location in the file system that starts with the prefix "file:". This example also

tells you that this Excel file uses:

1. static Java methods defined in the standard OpenRules® package
"com.openrules.tools.Methods"
2. xml-file "classpath:/Customer.xm]l"

3. dJava class "Response" from a package "hello"

1090

OpenRules, Inc. OpenRules® User Manual

4. include-file "HelloRules.xls" that is located in the subdirectory "include" of

the directory where the main xIs file is located.

Parameterized Rule Repositories

An OpenRules® repository may be parameterized in such a way that different
rule workbooks may be invoked from the same repository under different
circumstances. For example, let's assume that we want to define rules that offer
different travel packages for different years and seasons. We may specify a
concrete year and a season by using environment variables YEAR and SEASON.
Our rules repository may have the following structure:

rules/main/Main.x1s

rules/common/CommonRules.x1s

rules/2007/SummerRules.x1s

rules/2007/WinterRules.x1s

rules/2008/SummerRules.xls

rules/2008/WinterRules.xls

To make the OpenRulesEngine automatically select the correct rules from such a
repository, we may use the following parameterized include-statements inside

the Environment table of the main xls-file rules/main/Main.xls:

Environment

import.java season.offers.*
include ..[lcommon/SalutationRules.xls
include J${YEAR}${SEASON}Rules.xls

Thus, the same rules repository will handle both WinterRules and SummerRules
for different years. A detailed example is provided in the standard project

SeasonRules.

110©

OpenRules, Inc. OpenRules® User Manual

Integration with Java Objects

OpenRules® allows you to externalize business logic into xls-files. However,
these files can still use objects and methods defined in your Java environment.
For example, in the standard example “RulesRepository” all rules tables deal
with the Java object Appl defined in the Java package myjava.packagel.
Therefore, the proper Environment table inside file Main.xls (see above) contains

a property "import.java" with the value "myjava.packagel.*":

Environment

import_java myjava.packA1*
SubCategoryA1/RulesA11 xls
SubCategoryA1/RulesA12 xls

include

The property "import.java" allows you to define all classes from the package
following the standard Java notation, for example "hello.*". You may also import
only the specific class your rules may need, as in the example above. You can
define a separate property "import.java" for every Java package used or merge
the property "import.java" into one cell with many rows for different Java

packages. Here is a more complex example:

Environment

import.static com.openrules.tools.Methods
my.bom.*
my.impl.*

import java my.inventory.*
com.openrules.ml.*
my.package.MyClass
com.3rdparty.*

. .Jinclude/Rulesl.xls

include

.Jinclude/Rules2.xls

Naturally the proper jar-files or Java classes should be in the classpath of the

Java application that uses these rules.

If you want to use static Java methods defined in some standard Java libraries
and you do not want to specify their full path, you can use the property
"import.static". The static import declaration imports static members from

Java classes, allowing them to be used in Excel tables without -class

111©

OpenRules, Inc. OpenRules® User Manual

qualification. For example, many OpenRules® sample projects use static
methods from the standard Java library com.openrules.tools that includes class
Methods. So, many Environment tables have property "import.static"

defined as "com.openrules.tools.Methods". This allows you to write
out ("Rules 1")
instead of

Methods.out ("Rules 1")

Integration with XML Files

Along with Java classes, OpenRules® tables can use objects defined in XML files.
For example, the standard sample project HelloXMLCustomer uses an object of

type Customer defined in the file Customer.xml located in the project classpath:

<Customer
name="Robinson"
gender="Female"
maritalStatus="Married"
age="55"

/>

The xls-file, HelloXmlCustomer.xls, that deals with this object includes the

following Environment table:

Environment

import_static com_.openrules tools Methods
import.schema classpath:/Customer.xml|
import_java hello.Response

include include/HelloRules xls

The property, "import.schema", specifies the location of the proper xml-file, in
this case "classpath:/Customer.xml". Of course, you can use any other
location in your local file system that starts with the prefix "file:". This

example also tells you that this Excel file uses:

112©

http://openrules.com/HelloXmlCustomer.xls

OpenRules, Inc. OpenRules® User Manual

1. static Java methods defined in the standard OpenRules® package
"com.openrules.tools.Methods"

2. xml-file"classpath:/Customer.xml"

3. Javaclass "Response" from a package "hello"

4. include-file "HelloRules.xlIs" which is located in the subdirectory "include" of the

directory where the main xls file is located.
The object of the type "Customer" can be created using the following API:

Customer customer = Customer.load("classpath:/Customer.xml");

You may use more complex structures defined in xml-files. For example, the

project HelloXMLPeople uses the following xml-file:

<?xml version="1.0" encoding="UTF-8"7?>
<People type="Array of Person(s)">
<Person name="Robinson" gender="Female" maritalStatus="Married"

age="55" />

<Person name="Robinson" gender="Female"
maritalStatus="Single" age="23" />

<Person name="Robinson" gender="Male"
maritalStatus="Single" age="17" />

<Person name="Robinson" gender="Male"
maritalStatus="Single" age="3" />
</People>

The method that launches greeting rules for every Person from an array

People is defined as:

Method void helloPeople()

int hour = Calendar.getinstance().get(Calendar HOUR_OF_DAY):
App app = new App().
defineGreeting(hour, app);
/! define and greet People from the XNIL file Peaple.xml
People people = People_ load("classpath:/People xml");
for(int 1 = 0; | < people Person_length; ++i)
{
People Person person = people Person[i];
defineSalutation(person,app).
//greet Person
System_ out_printin{app.greeting+", "+app.salutation+" "+person.name+"1");

}

113©

OpenRules, Inc. OpenRules® User Manual

Integration with Relational Databases

OpenRules® provides a user with ability to access data and rules defined in
relational databases. There are two aspects of OpenRules® and database

integration:

1. Accessing data located in a database

2. Saving and maintaining rules in a database as Blob objects.

The detailed description of database integration in provided at

http://openrules.com/pdf/OpenRulesUserManual.DB.pdf.

Rules Version Control

For rules version control you can choose any standard version control system
that works within your traditional software development environment. We
would recommend using an open source product "Subversion" that is a
compelling replacement for CVS in the open source community. For business
users, a friendly web interface is provided by a popular open source product
TortoiseSVN. For technical users, it may be preferable to use a Subversion
incorporated into Eclipse IDE. One obvious advantage of the suggested approach
is the fact that both business rules and related Java/XML files will be handled by

the same version control system.

You may even keep your Excel files with rules, data and other OpenRules® tables
directly in Subversion. If your include-statements use http-addresses that point
to a concrete Subversion repository then the OpenRulesEngine will dynamically
access SVN repositories without the necessity to move Excel files back into a file

system.

Another way to use version control is to place your rule workbooks in a database
and use DBV-protocol to access different versions of the rules in run-time -

read more.

114©

http://openrules.com/pdf/OpenRulesUserManual.DB.pdf
http://subversion.tigris.org/
http://tortoisesvn.tigris.org/
http://www.eclipse.org/
http://openrules.com/docs/man_repositoryDB2.html

OpenRules, Inc. OpenRules® User Manual

Rules Authoring and Maintenance Tools

OpenRules® relies on standard commonly used tools (mainly from Open Source)

to organize and manage a Business Rules Repository:

Business Rules Repository Maintenance Tools User Interfaces
— Test Data —
N Tortoise
A : e Business
wd Business || Users
" Glossary ||
Eclipse
Interface
Technical
Users

llf*,
‘IMe/rfaces,v Business
Users
Caa

i—. Access Control 7
“Processing Logic

:
Decision ||

i > Eclipse
r.; Interfaces Technical
= Users
e Eclipse
fStvle Sheets — Interface
‘_Inter‘ag:_ﬁon Logic : <«
b l Technical
Web Users
DB
Interface E
«—— >
DB Admin

To create and edit rules and other tables presented in Excel-files you may use

any standard spreadsheet editors such as:

MS Excel™

OpenOffice™
Google Spreadsheets™

1150

http://openrules.com/ruleeditors.htm
http://openrules.com/RuleEditors.htm#Creating and Managing Rules with Excel and OpenOffice
http://openrules.com/RuleEditors.htm#Creating and Managing Rules with Excel and OpenOffice
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets

OpenRules, Inc. OpenRules® User Manual

Google Spreadsheets are especially useful for sharing spreadsheet editing - see

section Collaborative Rules Management with Google Docs.

For technical people responsible for rules project management OpenRules

provides an Eclipse Plug-in that allows them to treat business rules as a natural

part of complex Java projects.

OPENRULES® API

OpenRules® provides a Java API (Application Programming Interface) that

defines a set of commonly-used functions:

Creating a rule engine associated with a set of Excel-based rules
Creating a decision associated with a set of Excel-based rules
Executing different rule sets using application specific business objects

Creating a web session and controlling client-server interaction.

JavaDoc

The detailed API for the major Java classes OpenRulesEngine and Decision is

available from http://openrules.com/javadoc/. Below we will describe the most

popular methods.

OpenRulesEngine API

OpenRulesEngine is a Java class provide by OpenRule® to execute different rule
sets and methods specified in Excel files using application-specific business
objects. OpenRulesEngine can be invoked from any Java application using a
simple Java API or a standard JSR-94 interface. Being deployed as a web
service, OpenRules-based project can be invoked from any .NET application —

read more here.

Engine Constructors

OpenRulesEngine provides an interface to execute rules and methods defined in

Excel tables. You can see examples of how OpenRulesEngine is used in basic rule

116 ©

http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets
http://openrules.com/ruleproject.htm
http://openrules.com/javadoc/
http://openrules.com/docs/man_api.html#OpenRules Implementation of JSR-94 API
http://openrules.com/pdf/OpenRulesUserManual.WebService.pdf

OpenRules, Inc. OpenRules® User Manual

projects such as HelloJava, DecisionHelloJava, HelloJsr94 and web applications
such as Hellodsp, HelloForms, and HelloWS. To use OpenRulesEngine inside
your dJava code you need to add an import statement for
com.openrules.ruleengine.OpenRulesEngine and make sure
that openrules.all.jar is in the classpath of your application. This jar and
all 3rd party jar-files needed for OpenRules® execution can be found in the
subdirectory openrules.config/1ib of the standard OpenRules® installation.
You may create an instance of OpenRulesEngine inside of your Java program

using the following constructor:

public OpenRulesEngine (String xlsMainFileName)

where xIsMainFileName parameter defines the location for the main xls-file. To
specify a file location, OpenRules® uses an URL pseudo-protocol notation with
prefixes such as "file:", "classpath:", "http://", "ftp://", "db:",
etc. Typically, your main xls-file Main.xls is located in the subdirectory
"rules/main" of your Java project. In this case, its location may be defined as
"file:rules/main/Main.x1s". If your main xls-file is located directly in the

project classpath, you may define its location as "classpath:Main.x1s". Use a

URL like

http://www.example.com/rules/Main.x1s

when Main.xls is located at a website. All other xls-files that can be invoked
from this main file are described in the table "Environment" using include-

statements.

You may also use other forms of the OpenRulesEngine constructor. For example,

the constructor

OpenRulesEngine (String xlsMainFileName, String methodName)

allows you to also define the main method from the file xlsMainFileName that

will be executed during the consecutive runs of this engine.

117©

OpenRules, Inc. OpenRules® User Manual

Here is a complete example of a Java module that creates and executes a rule

engine (see HelloJava project):

package hello;

import com.openrules.ruleengine.OpenRulesEngine;

public class RunHelloCustomer ({

public static void main(String[] args) {

String fileName = "file:rules/main/HelloCustomer.xls";
String methodName = "helloCustomer";
OpenRulesEngine engine = new OpenRulesEngine (fileName) ;
Customer customer = new Customer ();
customer.setName ("Robinson") ;
customer.setGender ("Female") ;

customer.setMaritalStatus ("Married") ;

Response response = new Response();

Object[] objects = new Object[] { customer, response };

engine.run (methodName,objects) ;

System.out.println ("Response: " +
response.getMap () .get ("greeting") + ", " +
response.getMap () .get ("salutation") +

customer.getName () + "!");

As you can see, when an instance "engine" of OpenRulesEngine is created, you

can create an array of Java objects and pass it as a parameter of the method

" n

run-.

Engine Runs

The same engine can run different rules and methods defined in its Excel-files.

You may also specify the running method using
setMethod (String methodName) ;

or use it directly in the engine run:

118©

OpenRules, Inc. OpenRules® User Manual

engine.run (methodName,businessObjects) ;

If you want to pass to OpenRulesEngine only one object such as "customer", you

may write something like this:

engine.run ("helloCustomer", customer) ;

If you do not want to pass any object to OpenRulesEngine but expect to receive

some results from the engine's run, you may use this version of the method

run
String[] reasons = (String[]) engine.run ("getReasons");
Undefined Methods

OpenRulesEngine checks to validate if all Excel-based tables and methods are
actually defined. It produces a syntax error if a method is missing. Sometimes,
you want to execute a rule method/table from an Excel file but only if this

method is actually present. To do this, you may use this version of the method

boolean mayNotDefined = true;

engine.run (methodName, businessObjects, mayNotDefined) ;

In this case, if the method "methodName" is not defined, the engine would not
throw a usual runtime exception "7The method <name> is not defined' but rather
will produce a warning and will continue to work. The parameter
"mayNotDefined" may be used similarly with the method "run" with one

parameter or with no parameters, e.g.

engine.run ("validateCustomer", customer, true);

How to invoke rules from other rules if you do not know if these rules are
defined? It may be especially important when you use some predefined rule
names in templates. Instead of creating an empty rules table with the needed

name, you want to use the above parameter "mayNotDefined" directly in Excel.

1190

OpenRules, Inc. OpenRules® User Manual

Let's say you need to execute rules tables with names such as "NJ_Rules" or
"NY_Rules" from another Excel rules table but only if the proper state rules are

actually defined. You may do it by calling the following method from your rules:

Method void runStateRules(OpenRulesEngine engine, Customer customer, Response

response)

Obiject[] params = new Obiject[2];
params[0] = customer;
params[1] = response;

engine.run(methodName, params, true);

We assume here that all state-specific rules ("NJ_Rules", "NY_Rules", etc.) have
two parameters, "customer" and "response". To use this method you need to pass
the current instance of OpenRulesEngine from your Java code to your main
Excel file as a parameter "engine". If you write an OpenRules Forms application,
this Instance of the OpenRulesEngine 1s always available
as dialog.getEngine (), otherwise you have to provide access to it, e.g. by

attaching it to one of your own business objects such as Customer.

By default OpenRules will produce a warning when the required Excel rules

table or method is not available. You may suppress such warnings by calling:
engine.turnOffNotDefinedWarning () ;

Accessing Password Protected Excel Files

Some Excel workbooks might be encrypted (protected by a password) to prevent

other people from opening or modifying these workbooks. Usually it's done using

Excel Button “** and then Prepare plus Encrypt Document. OpenRules Engine

may access password-protected workbooks by calling the following method just

before creating an engine instance:

OpenRulesEngine.setCurrentUserPassword ("password") ;

120 ©

OpenRules, Inc. OpenRules® User Manual

Instead of "password" you should use the actual password that protects your
main and/or other Excel files. Only one password may be used by all protected
Excel files that will be processed by one instance of the OpenRulesEngine
created after this call. This call does not affect access to unprotected files. The
standard project "HelloJavaProtected" provides an example of the protected

Excel file - use the word "password" to access the file "HelloCustomer.xls".

Note. The static method "setCurrentUserPassword' of the class
OpenRulesEngine actually sets the BIFF8 encryption/decryption password for

the current thread. The use of a "null" string will clear the password.
Engine Attachments

You may attach any Java object to the OpenRulesEngine using

methods setAttachment (Object attachment) and getAttachment ().
Engine Version

You may receive a string with the current version number of the

OpenRulesEngine using the method getVersion ().

Dynamic Rules Updates

If a business rule is changed, OpenRulesEngine automatically reloads the rule
when necessary. Before any engine's run, OpenRulesEngine checks to determine
if the main Excel file associated with this instance of the engine has been
changed. Actually, OpenRulesEngine looks at the latest modification dates of
the file xlsMainFileName. If it has been modified, OpenRulesEngine re-
initializes itself and reloads all related Excel files. You can shut down this

feature by executing the following method:

engine.setCheckRuleUpdates (false) ;

121©

OpenRules, Inc. OpenRules® User Manual

Decision API

Decision Example

OpenRules® provides a special API for decision execution using the Java class
“Decision”. The following example from the standard project “Decision1040EZ”

demonstrates the use of this API.

public class Main {

public static void main(String[] args) {
String fileName = "file:rules/main/Decision.x1s";
OpenRulesEngine engine =
new OpenRulesEngine (fileName) ;
Decision decision =
new Decision ("ApplylO040EZ",engine);
DynamicObject taxReturn =
(DynamicObject) engine.run ("getTaxReturn");
engine.log ("=== INPUT:\n" + taxReturn);
decision.put ("taxReturn", taxReturn) ;
decision.execute();
engine.log ("=== OUTPUT:\n" + taxReturn);

Here we first created an instance engine of the class OpenRulesEngine and used
it to create an instance decision of the class Decision. We used the engine to get

an example of the object taxReturn that was described in Excel data tables:

DynamicObject taxReturn =
(DynamicObject) engine.run ("getTaxReturn");

Then we added this object to the decision:

decision.put ("taxReturn", taxReturn) ;

and simply executed decision:

decision.execute () ;

The Decision described in “Decision.xls” is supposed to modify certain attributes
inside the object decision and objects which were put inside the decision after its

execution.

122©

OpenRules, Inc. OpenRules® User Manual

Decision Constructors
The class Decision provides the following constructor:
public Decision(String decisionName, String xlsMainFileName)

where “decisionName” is the name of the main table of the type “Decision” and
“x1sMainFileName” is the same parameter as in the OpenRulesEngine’s

constructor that defines a location for the main xls-file.
There is also another constructor:
public Decision(String decisionName, OpenRulesEngine engine)

where the parameter OpenRulesEngine engine refers to an already created

instance of the OpenRulesEngine as in the above example.

Each decision has an associated object of type Glossary. When a decision is created, it
first executes the table “glossary” that must be defined in our rules repository. It fills out the
glossary, a step that applies to all consecutive decision executions. You may always access
the glossary by using the method

Glossary glossary = decision.getGlossary();

Decision Parameters

The class Decision is implemented as a subclass of the standard Java class
HashMap. Thus, you can put any object into the decision similarly as we did

above:
decision.put ("taxReturn", taxReturn) ;

You may access any object previously put into the decision by calling the method

get(name) as in the following example:

TaxReturn taxReturn = (TaxReturn)decision.get ("taxReturn");

123©

OpenRules, Inc. OpenRules® User Manual

You may set a special parameter

decision.put ("trace",”0ff”);
to tell your decision to turn off the tracing . You may use “On” to turn it on again.
Decision Runs

After defining decision parameters, you may execute the decision as follows:

decision.execute () ;

This method will execute your decision starting from the table of type “Decision”

whose name was specified as the first parameter of the decision’s constructor.

You may reset the parameters of your decision and execute it again without the
necessity of constructing a new decision. This is very convenient for multi-
transactional systems where you create a decision once by instantiating its
glossary, and then you execute the same decision multiple times but with
different parameters. To make sure that it is possible, the Decision’s method
execute() calls Excel’'s method “decisionObjects” each time before actually

executing the decision.

If you know that the types of decision parameters are changed between different

decision runs you may use the following variation of the method “execute”

decision.execute (true) ;

The actual execution of “this” decision involves engine runs for the following

Excel methods (in this order):

- engine.run("decisionObjects",this);

- engine.run("initializeDecision",this);

- engine.run("initializeDecisionRun",this);
- engine.run(this); // run the main decision

- engine.run("finalizeDecision",this);

124 ©

OpenRules, Inc. OpenRules® User Manual

All these methods are described in the standard file “DecisionTemplates.xls”.
The method "initializeDecision" is executed only during the first decision run. It
calls the method "customInitializeDecision" that may include an application
specific decision initialization.

The method "initializeDecisionRun" is executed during every decision run. It
calls the method "customInitializeDecisionRun" that may include a code that is
specific for every decision run, e.g. it may analyze the parameters of this run and
redefine some decision variables.

The method "finalizeDecision" is executed after the main Excel table of the type

“Decision” that was specified in the decision’s constructor.

Decision Tests

You may test your decision against multiple test cases defined in Excel table of
the type “DecisionTableTest” — see above. For example, if your test cases are

define in the table called “testCases”, you may test the decision as follows:

decision.test (“testCases”) ;
This method will execute your decision for each test case from the table

“testCases” considering them as separate runs.

Executing Decision Methods From Excel
There is one more form of this method:
decision.execute (String methodName) ;

It is used within Excel when you want to execute another Excel method. It is

implemented as follows:

public Object execute (String methodName) {
return getEngine () .run (methodName) ;

}

1250

OpenRules, Inc. OpenRules® User Manual

Decision Glossary

Every decision has an associated business glossary — see above. Glossaries are

usually presented in Excel tables that may look like this table "glossary":

Glossary glossary

Variable Business Concept Attribute
Gender gender
Date of Birth Customer dob
Marital Status maritalStatus
Greeting greeting
Salutation Response salutation
Current Hour hour

In large, real-world projects the actual content of business concepts such as the
above "Customer" can be defined in external applications using Java-based
Business Object Models or they may come from XML files, a database table, etc.
The list of attributes inside business objects can be very large and/or to be
defined dynamically. In such cases, you do not want to repeat all attributes in
your Excel-based glossary and then worry about keeping the glossary

synchronized with an IT implementation.

It is possible to programmatically define/extend the definition of the Glossary.
For example, we may leave in the Excel's glossary only statically defined
business concepts and their variables, e.g. in the above table we may keep only
the variables of the concept "Response" and remove all rows related to the
concept "Customer". Then in the Java module that creates an object "decision" of

the predefined type Decision we may add the following code:

Decision decision = new Decision (fileName) ;

String[] attributes = getCustomerAttributes();

String businessConcept = "Customer";

for (int 1 = 0; 1 < attributes.length; i++) {
String varName = attributes[i].getName() ;

decision.getGlossary () .put (varName,businessConcept,varName) ;

126 ©

OpenRules, Inc. OpenRules® User Manual

decision.put ("customer", customer);

decision.execute () ;

Here we assume that the method getCustomerAttributes () returns the
names of attributes defined in the class Customer. The variable name and the
attribute name are the same for simplicity - of course you may define them

differently.

You may add multiple concepts to the Glossary in a similar way. In all cases
keep in mind that the table "Glossary glossary" always has to be present in your
Excel repository even when it contain no rows. You also may find that the same
method put (variableName, businessConcept, attributeName) of the
class Glossary is used in the Glossary Template definition in the standard file

"DecisionTemplates.xls".

Business Concepts and Decision Objects

OpenRules® Glossary specifies names of business concepts that contain decision
variables. The connection (mapping) between business concepts and actual
objects that implement these concepts (decision objects) is usually specified in

the Excel table “decisionObjects” that may look like:

DecisionObject decisionObjects

Business Concept Business Object
Customer .= decision.get("customer"”)
Request = decision.get("loanRequest")
Internal = internal

The standard mapping is implemented in the DecisionObjectTemplate using the

following Glossary’s method:

void useBusinessObject (String businessConcept, Object object)

127 ©

OpenRules, Inc.

OpenRules® User Manual

What if you want to change actual business objects on the fly during the decision

execution? You can do it by using the same method inside your Excel rules. For

example, you may want to apply the following decision table “EvaluateAssets” for

all elements of an array “assets” of a given customer:

DecisionTable EvaluateAsset

Condition Condition Conclusion
Asset Name Asset Status GBS A
Status
Is One . -
of Assetl?2, Asset21, Asset23 Is Active Is Sufficient

In this case you still may specify the business concept “Asset” in your glossary

only once, but you may associate different elements of an array “assets” with the

concept Asset multiple times in the loop similar to the one below:

Method void evaluateCustomerAssets(Decision decision,

Customer customer)

EvaluateAsset(decision);

return;

if ("Sufficient".equals(customer.customerAssetsStatus))

Asset[] assets = customer.getAssets();

customer.customerAssetsStatus = "Insufficient";

for(int i=0; i<assets.length; i++) {
getGlossary().useBusinessObject("Asset",customer.assets]i]);

Changing Decision Variables Types between Decision Runs

OpenRules® Glossary does not require a user to specify actual types of the

variables - they are automatically defined from the actual types of decision

parameters. It allows you to change types of decision parameters between

decision runs without necessity to download all rules again. If you know that

some attributes corresponding to your decision variables may change their types

between different runs of the same decision, you may use the following Decision's

method:

execute (boolean objectTypesVary)

128 ©

OpenRules, Inc. OpenRules® User Manual

If the parameter "objectTypesVary" is true then before executing the
decision, the OpenRulesEngine will re-evaluate the decision's glossary and will
reset types of all object attributes based on the actual type of objects passed to

the decision as parameters. By default, the parameter "objectTypesVary" is

false.

Decision Execution Modes

OpenRulesEngine supports different execution modes by running the standard
sequential rule engine or a constraint-based inferential engine. Before executing

a decision you may set the proper execution mode. Here is a code example:

String fileName = "file:rules/main/Decision.xls";
System.setProperty ("OPENRULES MODE", "Execute");
Decision decision =

new Decision ("DetermineDecisionVariable", fileName) ;

By default this property is set to "Execute". If you want to use an inferential rule

engine known as “Rule Solver”, you should use

System.setProperty ("OPENRULES MODE", "Solve");

Read more about Rule Solver here.

Frequently Used Decision Methods

Below is a list of the public Decision’s method frequently used within decision

templates:

Access methods:

- getGlossary ():the method that returns the glossary
- getDecisionObject (String nameofBusinessConcept): the method that
returns a business object associated with the BusinessConcept

- isTraceOn (): returns true if the tracing of the decision is on

Methods that return values of decision variables based on their names:

1290

http://openrules.com/pdf/RulesSolver.UserManual.pdf

OpenRules, Inc. OpenRules® User Manual

- int getInt(String name)

- double getReal (String name)

- String getString (String name)
- Date getDate(String name)

- boolean getBool (String name)
Methods that set values of decision variables based on their names:

- void setInt (String name, int wvalue)

- void setReal (String name, double value)

- void setString(String name, String wvalue)
- void setDate(String name, Date value)

- void setBool (String name, Boolean value)

Comparison methods that compare a decision variable with a given “name”, against a given

“value”, or another decision variable using a given operator, “op”:

- Dboolean comparelnt (String name, String op, int value)

- boolean comparelInt (String namel, String op, String nameZ2)

- boolean compareReal (String name, String op, double wvalue)

- boolean compareReal (String namel, String op, String name?2)
- boolean compareBool (String name, String op, boolean value)
- boolean compareBool (String namel, String op, String name2)
- boolean compareDate (String name, String op, Date date)

- boolean compareDate (String namel, String op, String name2)
- boolean compareString(String name, String op, String value)

- Dboolean compareDomain (String name, String op, String

domain)

Generating Excel Files with new Decision Tables

OpenRules® allows you to generate xls-files with multiple decision tables
programmatically by providing the proper Java API. The Java class

DecisionBook that corresponds to one Excel workbook (or an xls-file) allows

1300

OpenRules, Inc. OpenRules® User Manual

you to add OpenRules® decision tables defined in Java. Multiple decision tables

can be added to a preliminary created instance of the DecisionBook class. Each

new decision table will be placed in a new worksheet of the same workbook. Then

you may simply save this decision book as an Excel file.

Example with Explanations

Let’s first consider an example provided in the standard OpenRules® installation

as the “DecisionWithGeneratedRules” project. In this project we want to run a

Java application (GenerateRules.java) to generate the following decision tables

in Excel:

DecisionTable DefineGreeting

If If Then

Current Hour |Current Hour |Result

==() ==11 Good Marning
==12 ==17 Good Afternoon
==18 ==21 Good Evening
==22 ==24 Good Might
DecisionTable CheckGreeting
ConditionVarOperValue Message
=Var= <0Oper> <\alue> Message
Result |ls Mot {Good Afternoon |Error: Expected Good Afternoon
Result |Is Good Afternoon |Good Result

Here is the proper Java class GenerateRules.java:

import com.openrules.table.external.DecisionBook;

public class GenerateRules {

)5

public static void main(String[] args) {
DecisionBook decisionBook = new DecisionBook();

decisionBook.addDecisionTable(

"DefineGreeting", //table
"DecisionTableTemplate", //template
new String[] { "If", "If", "Then" }, // labels
new String[] { "Current Hour","Current Hour","Result" }, //variables
new String[][] { //rules

new String[] {"»>=0","<=11","Good Morning"},
new String[] {"»>=12","<=17","Good Afternoon"},
new String[] {">=18","<=21","Good Evening"},
new String[] {">=22","<=24","Good Night"}

131©

OpenRules, Inc. OpenRules® User Manual

decisionBook.addDecisionTable(

"CheckGreeting", //table name
"DecisionTableTemplate", //template name
new String[] { "ConditionVarOperValue", "Message" },// labels
new String[] { "<Var> <Oper> <Value>", "Message" }, //titles
new String[][] { //rules

new String[] {"Result","Is Not","Good Afternoon",

"Error: Expected Good Afternoon"},
new String[] {"Result","Is","Good Afternoon"”, "Good Result"}

}
)5

decisionBook.saveToFile("./rules/include/Rules.x1s");

}
}

The first statement DecisionBook decisionBook = new DecisionBook(); simply
creates an instance of the class DecisionBook. Then we add two rules tables to
this decision book by using decisionBook.addDecisionTable(..);

Then you may easily map this Java structure to the above decision table
“DefineGreeting”. It is created based on the standard template
"DecisionTableTemplate". Then the strings { "If", "If", "Then" } define the
selected table columns from this template. The next array of strings { "Current
Hour", "Current Hour", "Result" } defines the names of decision variables used
in these columns. Then we have a two-dimensional array of strings where each
sub-array represents one rule (or the table row) such as

new String[] {">=0","<=11","Good Morning"}.

Depending on the column type, instead of the names of the decision variables the
column titles may contain any text in plain English. For example, the first
column in the second decision table “CheckGreeting” is defined as
“ConditionVarOperValue”, that according to the standard template has 3 sub-
columns. The title of this column is defined as “<var> <Oper> <Value>”. Note that
this title is “merged” while the content of the proper 3 sub-columns is defined
using 3 strings such as "Result","Is Not","Good Afternoon" in the unmerged

format.

132©

OpenRules, Inc. OpenRules® User Manual

Finally, this decision book is saved to the file “./rules/include/Rules.x1s” using

the method decisionBook.saveToFile("./rules/include/Rules.x1s");

Formal DecisionBook API

The Java class DecisionBook has a public constructor without parameters and

the following public method:

public void addDecisionTable(

String tableName, // table name

String templateName, // template name

String[] labels, // template column labels
String[] descriptions, // descriptions or variables
String[][] rules // rules

)s
This method adds a new decision table to the rule book. The first parameter is
the name of the generated decision table (no spaces allowed). The second
parameter is the name of the standard OpenRules template that has one of the
following values:

e DecisionTableTemplate — for regular single-hit decision tables

e DecisionTablelTemplate — for multi-hit decision tables

e DecisionTable2Template — for rule sequences (see more)
The third parameter is an array of column labels selected from the proper
template. The fourth parameter is an array of names that corresponds to the
column type — it could be either a name of the decision variable or a title of the
proper column. The fifth parameter is a two-dimensional array of strings where

each sub-array represents one rule (or the decision table row).

The method

public void saveToFile(String x1sFile);

saves this decision book in the Excel file whose name is provided as a parameter.

The method
public int getNumberOfRuleTables();

1330

OpenRules, Inc. OpenRules® User Manual

returns a number of decision tables currently added to the decision book. Please
note that the proper Excel file will contain a separate worksheet for each

decision table.

Logging API

OpenRules® provides an API for decision logging. Assuming that “decision” is an

instance of the class Decision, you may use the following logging methods:
e To log (print) any text string you may write
decision.log (text);
e To memorize the execution log you may write

decision.saveRunLog(true);

decision.execute();

Then all log-statements produced during this decision run will be saved

internally.

¢ You may get this saved log as follows:

Vector<String> log = decision.getRunLog () ;
You may print the saved log by the method
decision.printSavedRunLog ()
or you may save it into a file by the method
decision.printSavedRunlLog (filename)

This feature is very useful when your application wants to show the good
results of the decision execution but also need to show the errors in the user-

defined decision model.

JSR-94 Implementation

134©

OpenRules, Inc. OpenRules® User Manual

OpenRules® provides a reference implementation of the JSR94 standard known

as Java Rule Engine API (see http://www.jcp.org/en/jsr/detail?id=94). The

complete OpenRules® installation includes the following projects:

JSR-94 Project Description

lib.jsr94 ThlS. project contains the standard jsr94-
1.0 library

This is an OpenRules®'s reference
implementation for the JSR94 standard
com.openrules.jsr94|and includes the source code. It uses
OpenRulesEngine to implement
RuleExecutionSet

This is an example of using JSR94 for
Hellodsr94 simple rules that generate customized
greetings

Hellodspdsr94 is similar to Hellodsp but
uses the OpenRules® JSR-94 Interface to
create and run OpenRulesEngine for a web
application.

Hellodspdsr94

Multi-Threading

OpenRulesEngine is thread-safe and works very efficiently in multi-threaded
environments supporting real parallelism. OpenRulesEngine is stateless, which
allows a user to create only one instance of the class OpenRulesEngine, and then
share this instance between different threads. There are no needs to create a
pool of rule engines. A user may also initialize the engine with application data
common for all threads, and attach this data directly to the engine using the
methods setAttachment (Object attachment). Different threads will receive
this instance of the rule engine as a parameter, and will safely run various rules

in parallel using the same engine.

The complete OpenRules® installation includes examples "HelloFromThreads"
and “DecisionHelloMultiThreaded” that demonstrate how to organize a parallel
execution of the same OpenRulesEngine's instance in different threads and how

to measure their performance.

135©

http://www.jcp.org/en/jsr/detail?id=94

OpenRules, Inc. OpenRules® User Manual

DEPLOYMENT

OpenRules®-based applications can be deployed using the following approaches:
e As components of Java Applications

e As Web Services

e As presentation-oriented Web Applications

e On Cloud.

OpenRules® can be easily embedded in a Java application. At the same time, it
allows you to develop Web applications with complex rules-based logic without
forcing you to become an expert in various Web development techniques. Using
the commonly known Excel interface, you can define your business logicin the
form of Excel-based business rules and make them available as fine-grained Web
services. You also may define your presentation logicusing Excel-based web

forms with associated interaction rules. Being deployed as a presentation-

oriented Web application, it will invoke the related rule services whenever
necessary. Frequently, such a service-oriented approach to web application
development also involves a workflow engine that uses a publish/subscribe

paradigm for automatic invocation of different web services.

Embedding OpenRules in Java Applications

OpenRules® allows you to incorporate the business rules represented in an Excel-
based rules repository into any Java application. Using OpenRules® Java API, a
Java application can invoke a rule engine to execute different business rules and
receive the results back through Java objects that were passed to the engine as
parameters. The sample project HelloJava demonstrates how to invoke
OpenRulesEngine from a stand-alone Java program. The sample project
HelloJSP demonstrates how to invoke OpenRulesEngine from a JSP-based web
application. In general, with OpenRulesEngine extracted business logic remains
a natural extension of a Java application: business rules can be invoked similar

to regular Java methods.

136 ©

http://openrules.com/rulesdeployment.htm#Embedding OpenRules in Java Applications
http://openrules.com/rulesdeployment.htm#Deploying Rules as Web Services
http://openrules.com/rulesdeployment.htm#Deploying Rules and Forms as Web Applications
http://openrules.com/pdf/OpenRulesCloud.pdf
http://openrules.com/RuleForms.htm
http://openrules.com/RuleForms.htm
http://openrules.com/interaction.htm

OpenRules, Inc. OpenRules® User Manual

Deploying Rules as Web Services

A service-oriented Web application implements the endpoint of a fine-grained

Web service. If your system is based on a Service-oriented architecture, you will

probably prefer to treat business rules as a special type of loosely coupled web
services that support your decision making processes. We will use the term
"Rule Service" for business rules deployed as a web service. With OpenRules you
define and maintain your business rules using a combination of Excel, Java, and
Eclipse. You may test your rules as a stand-alone application or execute them
locally using a simple Java API. However, when you are ready to integrate your
business rules into an enterprise level application, OpenRules provides a "push-
button" mechanism for deployment of business rules as Web Services. The
sample project HelloWS demonstrates how to deploy an OpenRules-based
application as a web services. Two related sample projects HelloWSdJavaClient
and HelloWSExcelClient demonstrate how to execute a web service from a Java-

based or MS Office-based client. Read more here.

Deploying Rules and Forms as Web Applications

Presentation-oriented Web applications usually generate dynamic Web pages
containing various types of markup language (HTML, XML, and so on) in
response to requests coming from an Internet Browser. Among the most popular
Web techniques for web application development with Java are Java Servlets,
Struts, and application frameworks such as Spring. All these techniques use
Java programming language to dynamically process requests and construct
responses in a form text-based markup such as HTML or XML. All these
techniques are oriented to experienced software developers. This seriously limits
the participation of business analysts in the design and maintenance of business
interfaces.

OpenRules® can be easily integrated with any of these techniques using its Java
API. However, OpenRules provides its own straight-forward mechanism for web
application development without the involvement of "heavy" Java artillery.

Being functionally similar to the JSP technology, OpenRules® provide a much

1370

http://openrules.com/architecture_soa.htm
http://openrules.com/pdf/OpenRulesUserManual.WebService.pdf

OpenRules, Inc. OpenRules® User Manual

more intuitive and simplified way to create dynamic web content. Creators of
intelligent web interfaces do not have to know HTML, JScript or even Java.
They will use only a commonly known Excel interface. A non-technical user can
define complex web form layouts and the associated interaction logic in simple

Excel tables. OpenRules® Forms presented in MS Excel spreadsheets are

automatically translated into HTML pages without limitation on the
expressiveness of HTML. A web designer can use the power of decision tables to
define complex relationships between fields inside web pages and/or between
different pages. She can easily add standard or custom Excel-based validators to
check user input and inform a user about mistakes. Based on user input and
previously entered information, the forms content and presentation sequence can

be changed dynamically during the interaction process.

Generating Java Interfaces for Excel-based Decision Models

Usually an OpenRules-based decision model can be created and tested by business
analysts using Excel only. After that, they pass their tested model along with test
cases to developers for integration with the actual IT system. The developers look at
the Glossary and test cases with Datatype and Data tables and use them as a prototype
for their own Java objects. Usually for every Java class (bean) they manually define
only attributes with their types, and then use Java IDE such as Eclipse to generate all
accessors and modifiers. See for example how it was done in the basic project
“DecisionHelloJava”. This section describes how to automatically generate
Java interfaces for already tested decision models. We will demonstrate how to
generate Java interfaces using the sample project
“DecisionWithGeneratedJava”. A more complex example is presented in the
project “DecisionPatientTherapyWithBusinessMaps” that is also

included in the standard installation.

Generating Java Classes

Before generating a Java interface you need to have a working decision models tested

on a set of Data tables. For example, “DecisionWithGeneratedJava” is very

138©

http://openrules.com/RuleForms.htm
http://openrules.com/interaction.htm

OpenRules, Inc. OpenRules® User Manual

similar to “DecisionHelloJava” and includes the same greeting and salutation
rules. The test cases are based on the following Datatypes tables placed in the file

“Datatype.xls”:

Datatype Customer Datatype Response
String name String greeting
String marital Status String salutation
String gender
Date dob

int currentHour

The proper test data is placed in the file “TestData.xls™

Data Customer customers

name maritalStatus gender dob currentHour
Customer Name Marital Status Gender Date of Birth | Current Hour
Robinson Married Female 1/1/2001 20
Smith Single Male 10/19/1980 11
Variable Response respon:
greeting salutation
Greeting Salutation
? ?

This decision model was tested using RunTest.java that looks as follows:

public class RunTest {

public static veoid main(String[] args) {
String fileName = "file:rules/main/DecisionTest.xls";
Decision decision = new Decision("DetermineCustomerGreeting”,fileName);
decision.saveRunlLog(true);
decision.execute();
decision.log("Decision: + decision.getOutput());
decision.printSavedRunLog("results.txt");

1]

It creates and executes the decision model based on the main xls-file called

“DecisionTest.xls” that defines decision objects as below:

139 ©

OpenRules, Inc. OpenRules® User Manual

DecisionObject decisionObjects
Business Concept Business Object

Customer
Fesponse

getCustomer(decision)
getResponse(decision)

Method Response getRes (Decision decision)
return response;

Method Customer getCustomer(Decision decision)
return customers[0];

As you can see they point to the decision objects defined directly in Excel. This
file also includes the Environment table with references to Datatype.xls and

TestData.xls:

Environment

_finclude/Main_xls

finclude/Rules.xls

_finclude/Datatypes.xls
_finclude/TestData xls

_include/Glossary xls

/I Jopenrules config/DecisionTemplates. xls

include

Now we can use the same model to generate the proper Java interface. Here is
the main method of the class GenerateDecisionInterface.java:

public class GenerateDecisionInterface {

public static void main(String[] args) {
String fileName = "file:rules/main/DecisionTest.xls";
Decision decision = new Decision("DetermineCustomerGreeting"”,fileName);
String packageName = "hello";
String path = "src/hello/";
decision.generateDecisionObjects(packageName, path);

This code uses the Decision’s method “generateDecisionObjects” to generate the
proper Java interface based on the above decision objects. Actually in this case
two files will be generated:

- src/hello/Customer.java

- src/hello/Response.java

140 ©

http://openrules.com/xls/Customer.java
http://openrules.com/xls/Response.java

OpenRules, Inc. OpenRules® User Manual

The package name for the generated Java classes was defined as “hello” and the
relative path for the proper files was defined as “src/hello/”. You may look at the

generated files by clicking on the above links.

To execute the same decision model using these Java objects instead of Excel test
cases, we need to modify our main xls-file. So, instead of DecisionTest.xls we will

use the file Decisiondava.xls. It should define the same decision objects slightly

differently:
DecisionObject decisionObjects

Business Concept Business Object
Customer = getCustomer{decision)
Hesponse = getResponse(decision)

Method Customer getCustomer{Decision decision)
return (Customerjdecision.get("Customer”);

Method Response getResponse(Decision decision)
return (Response)decision.get("Response”);

So, now the decision objects should come not from Excel but rather should be
created in Java and put in the decision using something like

decision.put (“Customer”, customer) ;

The proper Environment tables now should not include Datatype.xls and
TestData.xls bit should include an import-statement for the proper Java

package:

Environment

.finclude/Main.xls
: _linclude/Rules xls
include :

include/Glossary xls

{1 Jopenrules.config/DecisionTemplates.xls
import.java hello.*

So, now we may use a Java launcher such as RunGeneratedJava.java:

141©

OpenRules, Inc. OpenRules® User Manual

public class RunGeneratedJava {
public static void main(String[] args) {

String fileName = "file:rules/main/DecisionJava.xls";
Decision decision = new Decision("DetermineCustomerGreeting”,fileName);
Customer customer = new Customer();

customer.setMame("Robinson");
customer.setMaritalStatus("Single");
customer.setGender("Male");

customer.setDob(new Bate(107, 5, 15, 5, 308));
customer.setCurrentHour(14);
Log.info(customer.getName() + + customer.getDob());
decision.put("Customer", customer);

Response response = new Response();
decision.put("Response"”, response);
decision.execute();

decision.log("Decision:

+ decision.getOutput());

This code does the following:
e Uses DecisionJava.xls to create our decision model
e Instantiates instances of the generated classes Customer and Response
e Puts these instances into the decision

e Executes the decision and prints the output.

You may similarly generate Java interfaces for your own decision models.

Using Generated Business Maps as a Decision Model Interface

The generated Java classes Customer and Response along with class attributes

and accessors/modifiers include several more convenience methods (click on the
links to see them). In particular, you may get a String value of any attribute by

its name using the generated method

public String getAttribute (String attributeName) ;
Each generated class also knows how to create a so called “BusinessMap” that

simplifies the Decision interface. For example, you may Customer’s business map

and fill it in as shown below:

142 ©

http://openrules.com/xls/Customer.java
http://openrules.com/xls/Response.java

OpenRules, Inc. OpenRules® User Manual

BusinessMap mapCustomer = Customer.createBusinessMap();

mapCustomer.setAttribute("name", "Robinson™);
mapCustomer.setAttribute("maritalStatus","Single");
mapCustomer.setAttribute("gender","Male");
mapCustomer.setAttribute("dob", "12/25/1980");
mapCustomer.setAttribute("currentHour", "14"});
decision.addBusinessMap(mapCustomer);

BusinessMap mapResponse = Response.createBusinessMap();
decision.addBusinessMap(mapResponse);

Object output = decision.executeWithBusinessMaps();

The complete example can be found in the file “Main.java” of the standard
project “DecisionWithGeneratedJava®.

The concept of the BusinessMap was created based on the real-world request
from one of OpenRules® customers who maintains multiple decision models that
are executed based on oncoming stream of messages. Business Maps allow the
customer not to be bothered with explicit instantiation of Java interface objects,
and fill out decision input directly in such maps. Business maps that include the

following methods:

143©

OpenRules, Inc. OpenRules® User Manual

public interface BusinessMap {

JEX
* @return String with a name of the business concept for this map
=

public String getBusinessConcept();

JEX
* @return a hash map with names and types of the map's attributes
=

public HashMap<String, String> getNamedTypes();

JE*
* Sets a value for the attribute converting a string to the proper type.
* @param name a string
* @param value a string
*f
public void setAttribute(String name, String value);

JE*
* @param name
* @return a string value of the attribute with a given name

=
public String getAttribute(String name);

JE*
* @param name a string
* @return a type of the attribute with a given name
*/

public String getType(String name);

JE*
* @return an underlying decision object of the class with name getBusinesConcept()
*/

public DecisionObject getDecisionObject();

/**

H

* @return a string with the map's attributes and their types
i
public String showTypes();

Thus, for every input/output type you may set all necessary attributes using
their values represented as strings. The map is smart enough to check that such
values are converted to the correct attribute type. If not, the method
setAttribute (name, value) will produce a RuntimeException. You also may
ask a business map to give you an attribute type by its name, and then to
validate if the actual value has (or can be cast to) this type before executing the

decision.

144 ©

OpenRules, Inc. OpenRules® User Manual

The standard installation includes two more projects that demonstrate how to
generate and use business maps:

e DecisionPatientTherapyWithBusiness Maps

e DecisionLoanWithBusinessMaps

The first project includes the following Java class

public class GenerateDecisionInterface {

public static veid main(String[] args) {
String fileName = "file:rules/DecisionPatientTherapy.xls";
Decision decision = new Decision("DeterminePatientTherapy”,filelName);
String packageMName = "healthcare";
String path = "src/healthcare/";
decision.generateDecisionObjects(packageName, path);

It generates two interface Java classes Patient and DoctorVisit. Then you may
use the following Java launcher to create a decision, fill out decision maps,
execute the decision and print the resulting maps. In this example a user do not
even have to know about the existence of the intermediate Java classes. Instead,

it may call the Decision’s method
public List<BusinessMap> createBusinessMaps(String packageName)
that returns a list of all(!) business maps from the package, inside which the

previous GenerateDecisionInterface call placed all generated files. You can find

the entire code in the file MainBusinessMaps.java:

145©

OpenRules, Inc. OpenRules® User Manual

public class MainBusinessMaps {

public static void main(String[] args) {
String fileName = "file:rules/DecisionPatientTherapy.xls";
Decision decision = new Decision("DeterminePatientTherapy”,fileName);

String packageMame = "healthcare";
List<BusinessMap> maps = decision.createBusinessMaps(packageName);
for(BusinessMap map : maps) {
Log.info("BusinessMap " + map.getBusinessConcept() + map.getNamedTypes());
if ("Patient".equals(map.getBusinessConcept())) {
map.setAttribute("name", "Peter N. Johnson");
map.setAttribute("age", "58");
map.setAttribute("allergies”,"Penicillin,Streptomycin™);
map.setAttribute("creatininelevel™,"2.8");
map.setAttribute("creatinineClearance™, "44.42");
map.setAttribute("weight”, "78");
map.setAttribute("activeMedication", "Coumadin");
map.setAttribute("numbers", "100,200,300");
T
else
if ("DoctorVisit".equals(map.getBusinessConcept()))} {
map.setAttribute("date", "2/15/2811");
map.setAttribute("encounterDiagnosis™, "Acute Sinusitis");
map.setAttribute("recommendedMedication"”, "?"};
map.setAttribute("recommendedDose™, "?");

T
Log.info(

+ map);

¥

Object output = decision.executeWithBusinessMaps();

Log.info("" + output);

for(BusinessMap map : maps) {
Log.info("" + map);

¥

The decision will be executed using the business maps as parameters, and will
fill out unknown attributes “recommendedMedication” and “recommendedDose”

in the map “DoctorVisit”.

Accessing Excel Data from Java - Dynamic Objects

You can access objects created in Excel data tables from your Java program.
These objects have a predefined type DynamicObject. Let's assume that you
defined your own Datatype, Customer, and created an array of customers in

Excel:

146 ©

OpenRules, Inc. OpenRules® User Manual

Data Customer customers

name maritalStatus gender age
CLEEIME] Marital Status Gender Age
Name
Robinson Married Female 24
Smith Single Male 19

Method Customer[] getCustomers(),
return customers;

In you Java program you may access these objects as follows:

OpenRulesEngine engine =

new OpenRulesEngine ("file:rules/Data.x1ls");
DynamicObject[] customers =
(DynamicObject[])engine.run ("getCustomers") ;
System.out.println ("\nCustomers:");
for (int i=0; i<customers.length; i++)

System.out.println ("\t"+customers([i]);

This code will print:

Customer (id=0) {
name=Robinson
age=24
gender=Female
maritalStatus=Married

}
Customer (id=1) {
name=Smith
age=19
gender=Male
maritalStatus=Single

You may use the following methods of the class DynamicObject:
public Object getFieldValue (String name);
public void setFieldValue (String name, Object value);
For example,

String gender

(String) customers[0].getFieldValue ("gender");

OpenRules, Inc. OpenRules® User Manual

will return "Female", and the code

customer.setFieldValue ("gender", "Male");
customer.setFieldValue ("age", 40);

will change the gender of the object customers[0] to "Male" and his age to 40.

EXTERNAL RULES

OpenRules® allows a user to create and maintain their rules outside of Excel-
based rules tables. It provides a generic Java API for adding business rules from

different external sources such as:

1. Database tables created and modified by the standard DB management
tools

2. Live rules tables in memory dynamically modified by an external GUI

3. Java objects of the predefined type “RuleTable”

4. Problem-specific rule sources that implement a newly offered rules

provider interface.

With external rules you may keep the business parts of your rules in any
external source while the technical part (Java snippets) will remain in an Excel-
based template, based on which actual rules will be created by the
OpenRulesEngine. For example, you may keep your rules in a regular database
table as long as its structure corresponds to the columns (conditions and actions)
of the proper Excel template. Thus, the standard DB management tools, or your
own GUI that maintains these DB-based rules tables, de-facto become your own

rules management environment.

The external rules may also support a preferred distribution of responsibilities
between technical and business people. The business rules can be kept and
maintained in a database or other external source by business analysts while
developers can continue to use Excel and Eclipse to maintain rules templates

and related software interfaces.

148 ©

OpenRules, Inc. OpenRules® User Manual

The detailed description of external rules in provided at

http://openrules.com/pdf/OpenRulesUserManual. ExternalRules.pdf.

OPENRULES® PROJECTS

Pre-Requisites
OpenRules® requires the following software:
Java SE JDK 1.6 or higher

Apache Ant 1.6 or higher

MS Excel or OpenOffice or Google Docs (for rules and forms editing only)

Eclipse SDK (optional, for complex project management only)

Sample Projects

The complete OpenRules® installation includes the following workspaces:

openrules.decisions - decision projects

openrules.rules - various rules projects

openrules.dialog — rules-based web questionnaires
openrules.web - rules-based web applications & web services
openrules.solver - constraint-based decisions with Rule Solver

openrules.cloud - cloud-based applications.

Each project has its own subdirectory, e.g. "DecisionHello". OpenRules® libraries
and related templates are located in the main configuration project,
“openrules.config”, included in each workspace. A detailed description of the

sample projects is provided in the Installation Guide.

Main Configuration Project

1490

http://openrules.com/pdf/OpenRulesUserManual.ExternalRules.pdf
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://office.microsoft.com/home/
http://download.openoffice.org/1.1.1/index.html
https://www.google.com/accounts/ServiceLogin?service=wise&passive=true&nui=1&continue=http://spreadsheets.google.com/ccc?new
http://www.eclipse.org/downloads/
http://openrules.com/downloads/protected/build/openrules_6.0.1.web.zip
http://openrules.com/downloads/protected/build/openrules_6.0.1.solver.zip
http://openrules.com/downloads/protected/build/openrules_6.0.1.solver.zip
http://openrules.com/pdf/OpenRulesInstallationGuide.pdf

OpenRules, Inc. OpenRules® User Manual

OpenRules® provides a set of libraries (jar-files) and Excel-based templates in the folder

“openrules.config” to support different projects.

Supporting Libraries

All OpenRules® jar-files are included in the folder, “openrules.config/1ib”.

For the decision management projects you need at least the following jars:

e commons-logging-1l.1l.jar

e log4j-1.2.15.jar

e commons-lang-2.3.jar

e poi-3.10-FINAL-20140208.jar

e poi-ooxml-3.10-FINAL-20140208.jar

e poi-ooxml-schemas-3.10-FINAL-20140208.jar
e dom4j-1.6.1.jar

e xmlbeans-2.3.0.jar

There is a supporting library
e com.openrules.tools.jar

contains the following optional facilities:

- operators described in the Java class Operator that can be used inside your
own Rules tables and templates

- convenience methods like “out (String text)” described in the Java class

Methods
- simple JDBC interfaces DobUtil, Database, Databaselterator
- text wvalidation methods like “isCreditCardvalid(String text)”

described in the Java class Validator

- XML reader.

If you use the JSR-94 interface you will also need

e com.openrules.jsr94.jar

If you use external rules from a database you will also need

e openrules.db.jar

150©

OpenRules, Inc. OpenRules® User Manual

e openrules.dbv.jar
e derby.jar
e commons-cli-1.1.Jjar.

2 (13

Different workspaces like “openrules.decisions”, “openrules.rules”, etc.

include the proper versions of the folder “openrules.config”.

Predefined Types and Templates

The Excel-based templates that support Decisions and Decision Tables included

in the folder, “openrules.config”

e DecisionTemplates.xls

e DecisionTableExecuteTemplates.xlss

Sample decision projects include Excel tables of the type “Environment” that
usually refer to “../../../openrules.config/DecisionTemplates.x1s”.
You may move all templates to another location and simply modify this reference

making it relative to your main xls-file.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or to this

Discussion Group. Read more at http://openrules.com/services.htm.

151©

mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules
http://openrules.com/services.htm

