OPENRULES®

Open Source Business
Decision Management System

Release 6.2.6

User Manual

OpenRules, Inc.
www.openrules.com
December-2013

http://www.openrules.com/

OpenRules, Inc. OpenRules® User Manual

Table of Contents

1019 o T 11 Lot 1 Lo o B PTN 6
2T =Y o T o TV P 6
OpenRuIes® {8007 0T T 4 1= o 1 7
[ToTol W] 0 T=T 01 A 0o 0 1Y 7=T 41 T 4 T 7

(000 T (=N 8 1 Lol -] 1 &3S 8

Spreadsheet Organization and Managementccovveuurcirsevencssrnvensisssssnssesssenanes 9
Workbooks, Worksheets, and Tables........cccciveiriirieireiiiiieietirreirreirsesrsesrnesesssensenssessssnerenes 9
How OpenRules’ Tables Are RECOZNIZEU.uceveeereererriresseesesessessessessesessessesessessesessessesseneas 10
OpPeNRUIES’ RUIE TADIE EXAMPIE ...evevereeenririrseeretesessesteeesessesessessessessssessessessssessensesessensenes 12
Business and TEChNICAl VIEWSceuuiiiiieiiiieicirieiccreeencesseenseseeenessesnssssenansssennssnssennnes 13

Decision Modeling and EXECULION...........cc.coveerereeeireeniiieeisinsisseesisseesessnssossnsssssassssnnns 14
Starting With DeCISION......cccuuciiiie ettt rrre s e reeeeesrresse e s e snssessennssessennssessennssesaennnnnnns 15
Defining DeciSion TabIEscc.iieeiiiieiiiiiiciiiiieccreeereeetrneerrnseerenneresserensesensessnssesansessnsesenns 18

Decision Table EXECULION LOGIC ..uuvveiiiiieiiiiieeeee ettt e e e errene e e 20
AND/OR CONAITIONS ..cciiiieeeriiiiieee e e eeceirete e et e e s s e e esrareeeesssssessssrsateeeesssssssssssaseseessssenssns 20
DecCision Table OPErators......uuiiiieeie et e e e e e st e e e e e e e s snnreaeeaeaaeas 21
Using Regular Expressions in Decision Table Conditions.......c.ccccvvveveereeeieiiccnneeeeenenn. 24
Conditions and Conclusions without Operatorscccocccvveeeeeeeeeiccciineeeee e, 24
Using Decision Variable Names inside Decision Table Cellsccccceeveeeieiiccnrvennnnn.n. 25
Using Formulas inside DeciSion TabIESeeeeiieiiiiiiiiiireeiee et eeeinrreee e 26
Direct References to Decision Variablesccccveiecieieiciiiiie e 27
Defining BUSINESS GlOSSArY.......cciieeuuiiiieeuiiieenniereeeneereennseereenssseseensssssennssessennssssssnnsssssennnns 28
(DTN 10110 = =X 0T - T 29
Connecting the Decisions with Business Objects........c..cccceeiieiiieniiiiiiiininieicnieeienencineeenennees 31
DeCiSION EXECULION.....ccuiiieeiiieiieeiiieiiieeerneieteaeteaereasisensestnsssrsssssensessnsssensessnssssnnssssasensnne 32
DeCiSION ANAlYSIS ..ccuuiiiiiiieeiiiiiiiiiirieiitiertneiereaieteeereaststnsesensserssssseesesensssensesenssssnnssssnsensnne 33
LYol o o T N1 1oV = 33
Decision Syntax Validation ..o 34
DecCision EXECULION REPOITS.....uuuiiei ittt e e et s e e e e e e e e aanee e e e e e aeeees 35
[DT=To 1Y o] o T I - [V=Rt 38
RUIES REPOSITOIY SEAICN ..ottt e e e e e e e sararrereeeeens 39
CoNSISTENCY CRECKING . .vvvvieiieie et e e e e e e e e e e eaarraes 40

Advanced DecCiSioN TABIEScoceeuueereeuniiiiveeniiisieensiisssensiissssnssisssssnssssssssnsssssssnnnns 40
Specialized Conditions and CONCIUSIONS.......ccccciiiuuiiiiiinniiiiiniiniieisss. 40
Specialized Decision Tablesccccciiiiuiiiiiiiiiiiiiiiiiiiiseirsssresssssessssnn 41

BT K] To T YL - o] L= PR 41

OpenRules, Inc. OpenRules® User Manual

LYol T Lo] N - 1 o117 S 43
Business Rules Defined on Collections of Objects........ccccceiiiiiniiiiiiniiniieiiinieeniineee. 44
Decision Tables for Comparing Ranking Listsccccceriiuniiiiieniiniieeiiniieeiinieeieeeses 46

RUIE TADIES ...ceeoeeeeiieniiieeiiiiniiiiiiiiieisisinsisisnsisssssessssisssasissssssssnsssssnssssssssssnsssssnsssssasans 47
SIMPle RUIE TabBI@ ...iieeiiiiiiiiiiiricirrinirrse et rrsseessesssssssesssssstesssssssesssssssesnsssse 48
How Rule Tables Are Organizedcccccceiiiiieuiiiiiniiiiieniniienniiesiessesssssssssssnes 50
Separating Business and Technical INnformationcccecciiiiiiiiiiniiiiinniiniieenn, 53
How Rule Tables Are EXeCULEdc.cvvreeueiniiiiiiiiiniineiiiinninnnnsseesissinnessssesssssssssnnssssassssaes 56

Relationships between Rules inside Rule Tablesccooveeeeiieicciiireee e, 56

MUHI-Hit RUIE TAbIES .ceeiiii i e e e e r e e e e 57

Rules Overrides in Multi-Hit Rule Tables ..., 58

Single-Hit RUIE TabI@S. e e e e e e e e e e eaaes 60

U LY =T TUT=] o ol TSR 61

Relationships among Rule Tables........ooeiiiieeeee e, 62
Simple AND / OR Conditions in RUIE TabIEscceiirieireeueriieieirierennneniserereeeeesenesessseseeesennnes 63
Horizontal and Vertical Rule Tables........ccccccoeiiiiiimmimiiiiiiiiiiiiinnniinnnnnrrsnnsnnsesseaeaes 64
MErgiNg Cells......cceuuiiiiieiiiiiiciiircrrcre e s ee e see s e s e sasssssesasssssennsssssennsssssennsssssannnns 64
Sub-Columns and Sub-Rows for DyNamiC Arrays.......cccceeeeiiemeeiiirneesiinneesiennsessesnsssssesnsnsnns 65
Using Expressions inside Rule Tables.........ccceiiiiiiniiiiiiiiiiieienneeisnenensssenessssenesssssenenns 66

Integer and REAI INTEIVAISuuvveeieeiee e e e e e e e 66

Comparing Integer and Real NUMDBErS.......c.uuiiiiiieiii e 68

Using Comparison Operators inside Rule Tablescccccvveeeieiccciiieeee e, 69

COMPANING DaAteS i i 70

Comparing Boolean ValUESuuiiiiiiieee ettt e e e e e 71

Representing STriNg DOMAiNSuuuuiuuuiuiiiiieiiieiuieieiuieierririrrerr——————————————. 72

Representing Domains of NUMbDErsouviiieiiii i, 73

USING JAVA EXPIrESSIONS ..vvvviuiiiiieiuiuiuiuiriuiursreteretareeetererererrrererrrrer...—.——————————. 73

Expanding and Customizing Predefined TYPeScccuvriiieieei e, 75

Performance ConSiderations........ccceeiieccciiiiieiee et e e e ee e 75

RUIE T@MPIALESc.eeeeeeeeeeeeeeeeeeeeeeeeeeieseiisereitseseinceseasessnssssessssnsssssnssessasssssansnnnnns 75
Simple RUles TeMPIAtesciiiieiiiiiiciireccrrree et rrnee s srsne s s ennssessennsssssennsssssennnnsnns 76
Defining Rules based on Templates.......ccccceieeuiiiiieiiiiieeiiirerisrerecsreneeessenessssenesssssenanns 77

Templates for Single-Hit Rule TabIes ... 77

Templates for Multi-Hit Rule Tables ... e 78
Partial Template Implementationcccccceeiiiiiiinirnniiiiiiiiinsessassssae 79
Templates with Optional Conditions and Actions.........cccceeeeirimeeirienrcciienecerrreereeeeeeneens 81
Templates for the Default Decision Tables..........ccoverueiiiiiiiiiirccrrrccrrrecr e e 82

DECISION TEMPIATES .eveeiiiiiieieieee et sr e s s bae e e e s abaeeesasees 85

OpenRules, Inc. OpenRules® User Manual

Three Major Decision Table TEMPIALES ...vveeeeiiiiecceee e 85
OIV L] o] 1414 1 4 o] o T TP 86
OpenRuIes® Y o R 88
OPENRUIESENGING APL......ccvuuiiiiiiniiiiiiiiiiiienieiienieiisssssiisssssiisssssissssssstssssssssssssssssansssssss 88
Y o F AT o[- O] a1 { AU ol] 3PP 88

oY o F =T o T U U1 1PN 90
Undefined Methodsoei it e e e 91
Accessing Password Protected EXCel FIlesoooeeeviieeeeiiiiceeee e 92
ENgine AttaChmMENtS ..cceei i 93

o o F AT L= I V=Y 2] [0 o PN 93
DYNAamMIiC RUIES UPAAtes.....uiiiiiiiieiciiiee ettt e st e st e e e e e e e aeees 93
[T o 3 T 3 T o 93
DECISION EXAMPIE ..ot e e e e e e e e et aaaeas 93
[DT=Tol 1Y o] o I 6le] o 15 o £ ¥ 1 o] 3PSt 94
DT Iy o] gl o= | =10 011 (=] PSRN 95

D T=To 1Y o] o TN 218] o 13 UPRRNt 95
Executing Decision Methods From EXCelcccueeviiiiieeiiiiiiee e 97
BT o T gl € (o 11-Y- | SRR 97
Business Concepts and Decision ODJECESvuviiiieiieiciiiiiieeiee et 98
Changing Decision Variables Types between Decision RUNSccccvveeeeeeeencnnnneen. 100
Decision EXECULION IMOUESuuiiiieiiiie ettt e e et e e e aee e s enaaee e 100
Generating Excel Files with Decision Tables........cccccoiieeeiiiiiiiiiiierccrrecec e e e e 101
Example With EXPlanationseeeeeieiieciiiiiieee ettt e e anrreeee e 101
oY 0 T | Y o SR STRPP 103
LOBEING APl ceeiieiiiiiiieiiiticieeerene it renestnessssesssenssseasessnssssnssssnsssssnsssensessnssssnssssnnssnen 104
JSR-94 IMPIementation........cccceuiiiiiiiiiiiiiceetreeeereeeeeeseeaseeeseenssessennssessennssessennssessennnnanee 105
IV ITL LA T =T e 111 - SRS 105
Integration With Java and XIML................ceveeueeiiineeeniiisiennsisssensssssssnsssssssnssssssssnsssnns 106
AV [O - 11PN 106
Y IR = SR 107
Data MOAEIiNG.........ccccuuueeemeeuniiiiienniiiiiiinsiissieniissssensssssssnsssssssnsssssssssssssssssnsssssssnnnns 109
Datatype and Data Tables.......cciciiiieiiiiiiiiiiiicirincre s e seeserensssensessnssssnssssnennes 110
How Datatype Tables Are Organizedcccccciieeiiiieiiiiniiiteieiieninieieieierensiseeensnssssnsessnnnenes 113
How Data Tables Are Organizedc.ccceiieiiiiniiiiiiieeniieneitnninineiereeserenesensessassssnssssnsssses 115
Predefined DatatyPesccciveeeeiiiieieiiiieieeteiaeeeeennneerennseeeennssesesnsssssesnsssssesnssnssesnnsnssenns 117
Accessing Excel Data from Java - Dynamic Objects........c.cccceeeiiinnniniinnniiniinniiniinniniienn, 119
How to Define Data for Aggregated Datatypesccccceivuuiiiiinniiniiniiiiinienienenen. 120
Finding Data Elements Using Primary Keyscccccceiiiiimniiniinniciinniniieniensees 121

OpenRules, Inc. OpenRules® User Manual

Cross-References Between Data Tables......ccccoiiveiiiiiieiiiiiiniiiiieeniiiieeeeeees 121
OpenRuIes® Ja0=T oo X 1o VTP 123
Logical and Physical REPOSItOriescccceiiiiiiuiiiiinniiiiiniiiiinieiieeieniemsesssen 123
Hierarchies of Rule WOrkBOOKScccciieeiimiiiiiiiiiirecieecrrecereeereeerensesenserenssssnsessnnnenes 125
TaTol [T F=To IAVAV Lo T o Yo Yo <3 125
Include Path and Common Libraries of Rule Workbooksccccceeeeiiieeiiinnnens 126
Using Regular Expressions in the Names of Included Files.........ccccceevcivieeicinenenns 126
[oaToTe]ud i doT T F- 1V RSP 127
IMPOIES FrOM XIMIL ...ttt e e e et e e e e eatae e e e e nba e e e e nneaeeeenns 127
Parameterized Rule REPOSItOries.....ccccivuueireniiieniiieeeieniienereasirreseernsserenerensersnsessasessnssenes 128
Rules Version CONEIrolcciiieiiiiiiiiiiiiieiiiiiieiieneeniennsestennssessensssssssnsssssssnsssssssnssssssnns 129
Rules Authoring and Maintenance TOOISc.ccceuiiieeierenirenieteenetreneernenerenserenserenseesnsessnsnenes 130
Database INtegration............ee.ceeeenieeeniiieenirieesorensisisesissessissnsssssssesssssossnsssssasssssnsssses 131
EXEEINAI RUIESccueeeeneeeeeiiieeriiieiiieiniiieisisinesessnsisssasissssssssnsssssssessnsssssnsssssnsssssnsssnns 131
OpenRuIes® PrOJECES.....coeeuiiieeiiiiiiiiiiiiiiieiiiienisinesestnsiessasissssssssnsssssssossnsssssnsssssnssssnnns 132
Pre-REOUISITES ..ccuieeiiiiiiiiiiiieiiieiieiieiteeraitenttenetesernsernsersssesssesssasssnsssnssenssesssasesnsesnsesnssans 132
SAMPIE PrOjJECtS. ... iiiieeiiiiiiiiiitiieireneistreneserrenessesrenessssrensssssssnsssssrenssssssenssssssenssssssennnns 132
Main Configuration Project..........ccceeiiimeiiiiiiiiiiiiiciicneiesnenesessennssessensssssssnsssssssnsssssssns 133
YU oY oo a a1 Y= W1 o = [=- SRS RPRR 133
Predefined Types and TempPlates.......cocccuiiiiieeee et 134
TeChNICAl SUPPOILcoueeeeeeeeeeeieiiiieiiiriiiereisireetsestesieseasiesesssssessssnssossnssessassssnanns 134

50

OpenRules, Inc. OpenRules® User Manual

INTRODUCTION

OpenRules® was developed in 2003 by OpenRules, Inc. as an open source
Business Rules Management System (BRMS) and since then has become one of
the most popular BRMS on the market. Over these years OpenRules® has been
naturally transformed in a Business Decision Management System (BDMS) with
proven records of delivering and maintaining reliable decision support software.
OpenRules® is a winner of several software awards for innovation and is used
worldwide by multi-billion dollar corporations, major banks, insurers, health
care providers, government agencies, online stores, universities, and many other
institutions.

Brief History

From the very beginning, OpenRules® was oriented to subject matter experts
(business analysts) allowing them to work in concert with software developers to
create, maintain, and efficiently execute business rules housed in enterprise-
class rules repositories. OpenRules® avoided the introduction of yet another “rule
language” as well as another proprietary rules management GUI. Instead,
OpenRules® relied on commonly used tools such as MS Excel, Google Docs and
Eclipse integrated with the standard Java. This approach enabled OpenRules®
users to create and maintain inter-related decision tables directly in Excel.
Initially each rules table included several additional rows, in which a software
developer could place Java snippets to specify the exact semantics of rule
conditions and actions.

In March of 2008, OpenRules® Release 5 introduced Rule Templates. Templates
allowed a business analyst to create hundreds and thousands of business rules
based on a small number of templates supported by software developers. Rule
templates minimized the use of Java snippets and hid them from business users.
Rule templates were a significant step in minimizing rule repositories and
clearly separating the roles of business analysts and software specialists in
maintaining the rules.

In March of 2011 OpenRules® introduced Release 6, which finally moved control
over business logic to business users. OpenRules® 6 effectively removed any
Java coding from rules representation allowing business analysts themselves to
specify their decisions and supporting decision tables directly and completely in
Excel. Business users can also create business glossaries and test cases in Excel
tables. They may then test the accuracy of execute their decisions without the
need for any coding at all.

Once a decision has been tested it can be easily incorporated into any Java or
NET environment. This process may involve IT specialists but only to integrate
the business glossary with a specific business object model. The business logic
remains the complete prerogative of subject matter experts.

6©

http://www.openrules.com/
http://www.openrules.com/ReleaseNotes_5.0.htm
http://www.openrules.com/RuleTemplates.htm
http://www.openrules.com/ReleaseNotes_6.0.htm

OpenRules, Inc. OpenRules® User Manual

OpenRules® Components

OpenRules® offers the following decision management components:

e Rule Repository for management of enterprise-level decision rules

¢ Rule Engine for execution of decisions and different business rules

¢ Rule Dialog for building rules-based Web questionnaires

e Rule Learner for rules discovery and predictive analytics

e Rule Solver for solving constraint satisfaction and optimization problems

e Finite State Machines for event processing and “connecting the dots”.

Integration of these components with executable decisions has effectively
converted OpenRules® from a BRMS to a BDMS, Business Decision

Management System, oriented to “decision-centric” application development.

OpenRules, Inc. is a professional open source company that provides software,

product documentation and technical support and other services that are highly
praised by our customers. You may start learning about product with the

document “Getting Started” which describes how to install OpenRules® and

includes simple examples. Then you may look at a more complex example in the

tutorial “Calculating Tax Return”. This user manual covers the core OpenRules®

concepts in greater depth. Additional OpenRules® components are described in

separate user manuals: see Rule Learner, Rule Solver, and Rule Dialog.

Document Conventions

The regular Century Schoolbook font is used for descriptive information.
The italic Century Schoolbook font is used for notes and fragments
clarifying the text.

The Courier New font is used for code examples.

70

http://www.openrules.com/RuleRepository.htm
http://www.openrules.com/RuleEngine.htm
http://www.openrules.com/ORD.htm
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/StateMachines.htm
http://openrules.com/company.htm
http://openrules.com/services.htm
http://openrules.com/what_they_say.htm
http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Tutorial.Decision1040EZ.pdf
http://www.openrules.com/RuleLearner.htm
http://www.openrules.com/RuleSolver.htm
http://www.openrules.com/ORD.htm

OpenRules, Inc. OpenRules® User Manual

CORE CONCEPTS

OpenRules® is a BDMS, Business Decision Management System, oriented to
“decision-centric” application development. OpenRules® utilizes the well-
established spreadsheet concepts of workbooks, worksheets, and tables to build
enterprise-level rule repositories. Each OpenRules® workbook is comprised of
one or more worksheets that can be used to separate information by types or

categories.

To create and edit rules and other tables presented in Excel-files you can use any

standard spreadsheet editor such as:

e MS Excel™
e OpenOffice™

e Google Docs™
Google Docs™ is especially useful for collaborative rules management.

OpenRules® supports different types of spreadsheets that are defined by their
keywords. Here is the list of OpenRules® tables along with brief description of

each:

Defines a decision that may consist of multiple
Decision sub-decisions associated with different decision
tables
DecisionTable or DT or This_is a singl'ejhit decis!on table thgt uses
DecisionTableSingleHit or mu!tlple conditions on dlfferent defined on
. variables to reach conclusions about the

RuleFamily decision variables
For each decision variable used in the decision
tables, the glossary defines related business
concepts, as well as related implementation
attributes and their possible domain
Associates business concepts specified in the
DecisionObject glossary with concrete objects defined outside
the decision (i.e. as Java objects or Excel Data

Glossary

80©

OpenRules, Inc. OpenRules® User Manual

tables)

Defines a decision table that includes Java
snippets that specify custom logic for

Rules conditions and actions. Read more. Some Rules
tables may refer to templates that hide those
Java snippets.

Defines a new data type directly in Excel that

Datatype can be used for testing
Data Creates an array of test objects
Variable Creates one test object
This table defines the structure of a rules
Environment repository by listing all included workbooks,

XML files, and Java packages
Defines expressions using snippets of Java
code and known decision variables and objects

Method

DecisionTablel or DT1 or
DecisionTableMultiHit

A multi-hit decision table that allows rule
overrides

A multi-hit decision table that like
DecisionTable2 executes all rules in top-down

DecisionTable2 or DT2 order but results of the execution of previous
rules may affect the conditions of rules that
follow
A special table type used by OpenRules®

Layout Forms and OpenRules® Dialog

The following section will provide a detailed description of these concepts.

SPREADSHEET ORGANIZATION AND MANAGEMENT

OpenRules® uses Excel spreadsheets to represent and maintain business rules,
web forms, and other information that can be organized using a tabular format.
Excel is the best tool to handle different tables and is a popular and widely used

tool among business analysts.

Workbooks, Worksheets, and Tables

OpenRules® utilizes commonly used concepts of workbooks and worksheets.
These can be represented and maintained in multiple Excel files. Each
OpenRules® workbook is comprised of one or more worksheets that can be used
to separate information by categories. Each worksheet, in turn, is comprised of

one or more tables. Decision tables are the most typical OpenRules® tables and

90

http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/docs/man_forms.html#Introducing Simple Layout Tables
http://openrules.com/pdf/OpenRulesDialog.pdf

OpenRules, Inc. OpenRules® User Manual

are used to represent business rules. Workbooks can include tables of different

types, each of which can support a different underlying logic.

How OpenRules® Tables Are Recognized

OpenRules® recognizes the tables inside Excel files using the following parsing

algorithm.

1. The OpenRules® parser splits spreadsheets into “parsed tables”. Each logical
table should be separated by at least one empty row or column at the start of
the table. Table parsing is performed from left to right and from top to
bottom. The first non-empty cell (i.e. cell with some text in it) that does not
belong to a previously parsed table becomes the top-left corner of a new
parsed table.

2. The parser determines the width/height of the table using non-empty cells as
its clues. Merged cells are important and are considered as one cell. If the
top-left cell of a table starts with a predefined keyword (see the table below),
then such a table is parsed into an OpenRules® table.

3. All other "tables," i.e. those that do not begin with a keyword are ignored and

may contain any information.

The list of all keywords was described above. OpenRules® can be extended with

more table types, each with their own keyword.

While not reflected in the table recognition algorithm, it is good practice to use a
black background with a white foreground for the very first row. All cells in this
row should be merged, so that the first row explicitly specifies the table width.

We call this row the "table signature". The text inside this row (consisting of
one or more merged cells) is the table signature that starts with a keyword. The
information after the keyword usually contains a unique table name and

additional information that depends on the table type.

If you want to put a table title before the signature row, use an empty row

between the title and the first row of the actual table. Do not forget to put an

100

OpenRules, Inc. OpenRules® User Manual

empty row after the last table row. Here are examples of some typical tables

recognized by OpenRules®.

OpenRules® table with 3 columns and 2 rows:

Keyword <some text>

Something

Something

Something

Something

Something

Something

OpenRules® table with 3 columns and still 2 rows:

Something Something
Something Something Something
Something Something Something

OpenRules® table with 3 columns and 3 rows (empty initial cells are acceptable):

Keyword <some text>

Something

Something

Something

Something

Something

OpenRules® table with 3 columns and 2 rows (the empty 3rd row ends the table):

Keyword <some text>

Something Something Something
Something Something Something
Something Something Something

OpenRules® table with 2 columns and 2 rows (the empty cell in the 3rd column of
the title row results in the 4th columns being ignored. This also points out the

importance of merging cells in the title row):

Keyword Something | Something
Something Something Something Something
Something Something Something Something

OpenRules® will not recognize this table (there is no empty row before the

signature row):

11©

OpenRules, Inc.

OpenRules® User Manual

Table Title
Keyword <some text>

Something

Something

Something

Something

Something

Fonts and coloring schema are a matter of the table designer's taste. The

designer has at his/her disposal the entire presentation power of Excel (including

comments) to make the OpenRules® tables more self-explanatory.

OpenRules®Rule Table Example

Here is an example of a worksheet with two rules tables:

A Microsoft Excel - HelloCustomer.xls

J@ Filz Edit View Insert Format Tools Data Window Help

=101 x|
=181 x|

DEEa SR 2@~ &z 4s8|E ¥/B -

23]

¢a0 -] =
e B I C | D i
el =
| 2
E Rules void defineGreeting(int hour, Response response)
| ?_ Hour From Hour To Set Greeting
g 0 11 Good Marning
g 12 17 Good Afternoon
10 18 22 Good Evening
11 23 24 Good MNight

Rules void defineSalutation(Customer customer, Response response)
Gender Marital Status Set Salutation
hale hr.
Female Married
Female Single

|4 [4]» [M]'Decision Tables

Launcher £ Environment f

Ready

1]

This workbook 1s comprised of three worksheets:

1. Worksheet "Decision Tables" - includes rule tables

2. Worksheet "Launcher" - includes a method that defines an order and

conditions under which rules will be executed

120

OpenRules, Inc. OpenRules® User Manual

3. Worksheet "Environment" - defines the structure of a rules repository by

listing all included workbooks, XML files, and Java packages (if any).

The worksheet "Decision Tables" is comprised of two rule tables "defineGreeting"
and "defineSalutation". Rule tables are a traditional way to represent business
decision tables. Rule tables are decision tables that usually describe
combinations of conditions and actions that should be taken when all of the
conditions have been satisfied. In the table "defineGreeting", the action "Set
Greeting" will be executed when an "hour," passed to this table as a parameter,
1s between "Hour From" and "Hour To". In the table "defineSalutation", an action
"Set Salutation" will be executed when a customer's Gender and Marital Status

correspond to the proper row.

These tables start with signature rows that are determined by a keyword in the

first cell of the table. A table signature in general has the following format:

Keyword return-type table-name (typel parl, type2 par2,..)

where table-name is a one-word function name and return-type, typel, and type
2 are types defined in the current OpenRules® configuration. For example, type

may be any basic Java type such as int, double, Date, or String.

The rule tables above are recognized by the keyword "Rules". All of the columns
have been merged into a single cell in the signature rows. Merging cells B3, C3,
and D3 specifies that table "defineGreeting" has 3 columns. A table includes all
those rows under its signature that contain non empty cells: in the example

above, an empty row 12 indicates the end of the table "defineGreeting".

Limitation. Avoid merging rule rows in the very first column (or in the very first

row for horizontal tables) - it may lead to invalid logic.

Business and Technical Views
OpenRules® tables such as “Rules” and “Data” may have two views:

[1] Business View

130

OpenRules, Inc. OpenRules® User Manual

[2] Technical View

These two views are implemented using Excel's outline buttons [1] and [2] at the
top left corner of every worksheet - see the figure below. This figure represents a
business view - no technical details about the implementation are provided. For
example, from this view it is hard to tell for sure what greeting will be generated
at 11 o'clock: "Good Morning" or "Good Afternoon"? If you push the Technical
View button [2] (or the button "+" on the left), you will see the hidden rows with
the technical details of this rules table:

[I2] [A] B | c | D
2
i Rules void defineGreeting(int hour, Response response)
{4 G C2 Al
min <= hour hour <= max requnsei.map.put{'greetmg !
5 greeting);
| & int min int max String greeting
=1 | 7 Hour From Hour To Set Greeting
i 0 1 Good Morning
g 12 17 Good Afternoon
10 18 22 Good Evening
11 23 24 Good Might

The technical view opens hidden rows 4-6 that contain the implementation
details. In particular, you can see that both "Hour From" and "Hour To" are
included in the definition of the time intervals. Different types of tables have

different technical views.

Note. Using Rules Templates you may completely split business and technical

information between different Excel tables. Decisions do not use technical views

at all because they do not require any coding and rely on predefined templates.

DECISION MODELING AND EXECUTION

OpenRules® methodological approach allows business analysts to develop their
executable decisions with underlying decision tables without (or only with a

limited) help from software developers. You may become familiar with the major

14©

OpenRules, Inc. OpenRules® User Manual

decision modeling concepts from simple examples provided in the document

“Getting Started” and several associated tutorials. First we will consider the

simple implementation options for decision modeling, and later on we will

describe more advanced OpenRules® concepts.

Starting with Decision

From the OpenRules® perspective a decision contains:

- a set of decision variables that can take specific values from domains of
values
- a set of decision rules (frequently expressed as decision tables) that

specify relationships between decision variables.

Some decision variables are known (decision input) and some of them are
unknown (decision output). A decision may consist of other decisions (sub-
decisions). To execute a decision means to assign values to unknown decision
variables in such a way that satisfies the decision rules. This approach

corresponds to the OMG standard known as “DMN”.

OpenRules® applies a top-down approach to decision modeling. This means that
we usually start with the definition of a Decision and not with rules or data.
Only then we will define decision tables, a glossary, and then data. Here is an

example of a Decision:

Decision DeterminePatientTherapy

Decisions Execute Decision Tables
Define Medication DefineMedication
Define Creatinine Clearance CalculateCreatinineClearance
Define Dosing DefineDosing
Check Drug Interaction WarnAboutDruglnteraction

Here the decision “DeterminePatientTherapy” consists of four sub-decisions:

150

http://openrules.com/pdf/OpenRulesGettingStarted.pdf
http://openrules.com/pdf/Decision1040EZ.pdf
http://openrules.com/dmn_primer.htm

OpenRules, Inc. OpenRules® User Manual

e “Define Medication” that is implemented using a decision table
“DefineMedication”

e “Define Creatinine Clearance” that is implemented using a decision table
“DefineCreatinineClearance”

e “Define Dosing” that is implemented using a decision table
“DefineDosing”

e “Check Drug Interaction” that is implemented using a decision table

“WarnAboutDruglnteraction”.

The table “Decision” has two columns “Decisions” and “Execute Decision Tables”
(those are not keywords and you can use any other titles for these columns). The
first column contains the names of all our sub-decisions - here we can use any
combinations of words as decision names. The second column contains exact
names of decision tables that implement these sub-decisions. The decision table

names cannot contain spaces or special characters (except for “underscore”).

OpenRules® allows you to use multiple (embedded) tables of the type “Decision”
to define more complex decisions. For example, a top-level decision, that defines
the main decision variable, may be defined through several sub-decisions about

related variables:

Decision DecisionMain

Decisions Execute Rules / Sub-Decisions
Define Variable 1 DecisionTableVariablel
Define Variable 2 DecisionTableVariable21
Define Variable 2 DecisionTableVariable22
Define Variable 3 DecisionVariable3
Define Variable 4 DecisionTableVariable4

In order to Define Variable 2 it is necessary to execute two decision tables. Some
decisions, like "Define Variable 3", may require their own separate sub-decisions

such as described in the following table:

16 ©

OpenRules, Inc. OpenRules® User Manual

Decision DecisionVariable3

Decisions Execute Rules
Define Variable 3.1 DecisionTableVariable31
Define Variable 3.2 DecisionTableVariable32
Define Variable 3.3 DecisionTableVariable33

These tables can be kept in different files and can be considered as building
blocks for your decisions. This top-down approach with Decision Tables and
dependencies between them allows you to represent even quite complex decision

logic in an intuitive, easy to understand way.

Some decisions may have a more complex structure than the just described
sequence of sub-decisions. You can even use conditions inside decision tables. For
example, consider a situation when the first sub-decision validates your data and
a second sub-decision executes complex calculations but only if the preceding
validation was successful. Here is an example of such a decision from the tax

calculation tutorial:

Decision Apply1040EZ
Condition ActionPrint ActionExecute
1040EZ Eligible Decisions Execute
Validate ValidateTaxReturn
Is TRUE Calculate DetermineTaxReturn
Is FALSE Do Mot Calculate

Since this table “Decision Apply1040EZ” uses an optional column “Condition”, we
have to add a second row. The keywords “Condition”, “ActionPrint”, and
“ActionExecute” are defined 1in the standard OpenRules® template
“DecisionTemplate” — see the configuration file “DecisionTemplates.xls” in the
folder “openrules.config”. This table uses a decision variable “1040EZ Eligible”
that is defined by the first (unconditional) sub-decision “Validate”. We assume
that the decision “ValidateTaxReturn” should set this decision variable to TRUE

or FALSE. Then the second sub-decision “Calculate” will be executed only when

17©

http://openrules.com/pdf/Decision1040EZ.pdf

OpenRules, Inc. OpenRules® User Manual

“1040EZ Eligible” is TRUE. When it is FALSE, this decision, “Apply1040EZ”,
will simply print “Do Not Calculate”. In our example the reason will be printed

by the decision table “ValidateTaxReturn”.

Note. You may use many conditions of the type “Condition” defined on different
decision variables. Similarly, you may use an optional condition “ConditionAny”
which instead of decision variables can use any formulas defined on any known
objects. It is also possible to add custom actions using an optional action

“ActionAny” — see “DecisionTemplates.xls” in the folder “openrules.config”.

When you have completed defining all decision and sub-decisions, you may define

decision tables.

Defining Decision Tables

OpenRules® decision modeling approach utilizes the classical decision tables that
were in the heart of OpenRules® BDMS from its introduction in 2003.
OpenRules® uses the keyword “Rules” to represent different types of classical
decision tables. Rules tables rely on Java snippets to specify execution logic of
multiple conditions and actions. In 2011 OpenRules® version 6 introduced a
special type of decision tables with the keyword “DecisionTable” (or “DT”) that
do not need Java snippets and rely on the predefined business logic for its
conditions and conclusions defined on already known decision variables. For

example, let’s consider a very simple decision “DetermineCustomerGreeting”:

Decision DetermineCustomerGreeting

Decisions Execute Rules
Define Greeting Word DefineGreeting
Define Salutation Word DefineSalutation

It refers to two decision tables. Here is an example of the first decision table:

180

OpenRules, Inc. OpenRules® User Manual

DecisionTable DefineGreeting |

Condition Condition Conclusion
Current Hour Current Hour Greeting
>= 0 <= 11 Is Good Morning
>= 11 <= 17 Is Good Afternoon
>= 17 <= 22 Is Good Evening
>= 22 <= 24 Is Good Night

Its first row contains a keyword “DecisionTable” and a unique name (no spaces
allowed). The second row uses keywords “Condition” and “Conclusion” to specify
the types of the decision table columns. The third row contains decision variables
expressed in plain English (spaces are allowed but the variable names should be

unique).

The columns of a decision table define conditions and conclusions using different
operators and operands appropriate to the decision variable specified in the
column headings. The rows of a decision table specify multiple rules. For
instance, in the above decision table “DefineGreeting” the second rule can be

read as:

“IF Current Hour is more than or equal to 11 AND Current Hour is less
than or equal to 17 THEN Greeting is Good Afternoon .

Similarly, we may define the second decision table “DefineSalutation” that

determines a salutation word (it uses the keyword “DT” that is a synonym for

“DecisionTable”):

DT DefineSalutation |

Condition Condition Conclusion

Gender Marital Status Salutation
Is Male Is Mr.
Is Female | Is Married Is Mrs.
Is Female | Is Single Is Ms.

190

OpenRules, Inc. OpenRules® User Manual

If some cells in the rule conditions are empty, it is assumed that this condition is
satisfied. A decision table may have no conditions but it always should contain

at least one conclusion.

Decision Table Execution Logic

OpenRules® executes all rules within DecisionTable in a top-down order. When
all conditions inside one rule (row) are satisfied the proper conclusion(s) from the

same row will be executed, and all other rules will be ignored.

Note. OpenRules® decision tables can be used to implement a methodological

approach described in the book “The Decision Model”. It relies on a special type

of decision tables called “Rule Families” that require that the order of rules
inside a decision table should not matter. It means that to comply with the
Decision Model principles, you should not rely on the default top-down rules
execution order of OpenRules® decision tables. Instead, you should design your
decision table (you even may use the keyword “RuleFamily” instead of “DT”) in
such a way that all rules are mutually exclusive and cover all possible
combinations of conditions. The advantage of this approach is that when you
decide to add new rules to your rule family you may place them in any rows
without jeopardizing the execution logic. However, in some cases, this approach
may lead to much more complex organization of rule families to compare with

the standard decision tables.

AND/OR Conditions

The conditions in a decision table are always connected by a logical operator
“AND”. When you need to use “OR”, you may add another rule (row) that is an
alternative to the previous rule(s). However, some conditions may have a
decision variable defined as an array, and within such array-conditions “ORs”

are allowed. Consider for example the following, more complex decision table:

200

http://www.kpiusa.com/index.php?option=com_content&view=article&id=22&Itemid=8

OpenRules, Inc.

OpenRules® User Manual

Here the decision variables “Customer Profile”, “Customer Product”,

= One Do Not Seving Account, DebUATY Care
ot New,Bronze Saver {include Checlong Account nckide Saving Account Are \Web Banking
CO wih 25 besis point CD with 25 basis pont ncraase.
.g:" New Bronze Saver |aclide cc’:::": Account :qw":: ncrease, Noney Market Mutual| Are | Money Market Mutual Fund, Crectt
veréeaft Protectos Fund, Credt Card Card
CO wth 25 dasis point CD with 50 besis pont ncrease.
'g;" Mow Bronze Stver |nchide ¢ '::“"':‘ I ?d:':: ncrease. Money Market Motual | Are | Money Market Mutusl Fund, Creat
Fund, Credt Carg Caett, DebUATM Card, Yeab Baring
CD with 50 basis posnt ncrease.
CO with 25 sasis point
&0an Codt ncloe| Checkng Accauat Do Mot |, ense, Money Martet Mutuni| Are | Mo0eY Uarket Mutual Fund, Credt Oold Package
o1 hehde fand, Web Bankn, Card, DebUATM Card, \Wab
v Banking, Evolerage Acsaunt
CD with 50 basi pont Nerease
CO win 25 bass pont Money Market Nutusi Fund, Cresa
'g;" Patnus vchoe cmm&:::" Saving :“c:::, norease Noney Market Metual| Are | Carg with no anmual fee, Debt/ATM | Patinum Package
Fuad, Web Santing Card, Web Banking wieh no charge,
Erokarage Account
Are Hooe Sorry

and

“Offered Products” are arrays of strings. In this case, the second rule can be read

as:

IF Customer Profile Is One Of New or Bronze or Silver
AND Customer Products Include Checking Account and
Overdraft Protection
AND Customer Products Do Not Include CD with 25 basis point

increase,

Money Market Mutual Fund,

and Credit Card

THEN Offered Products ARE CD with 25 basis point increase,

Money Market Mutual Fund,

Decision Table Operators

and Credit Card

OpenRules® supports multiple ways to define operators within decision table

conditions and conclusions. When you use a text form of operators you can freely

use upper and lower cases and spaces. The following operators can be used inside

decision table conditions:

When you use “=" or “=="
Is R inside Excel write”’=" or”’=="
’ to avoid confusion with
Excel’s own formulas
Is Not = 'Snoé’qu'all\.l?;[\liggu;c’ﬁ_?t’ Not Defines an inequality operator
- Is More, More, Is More Than, Is For integers and real numbers,
Greater, Greater, Is Greater Than and Dates

21©

OpenRules, Inc.

OpenRules® User

Manual

Is More Or Equal. Is More Or Equal
To, Is More Than Or Equal To, Is
Greater Or Equal To, Is Greater Than
Or Equal To

For integers and real numbers,
and Dates

Is Less Or Equal, Is Less Than Or
Equal To, Is Less Than Or Equal To, Is
Smaller Or Equal To, Is Smaller Than
Or Equal To, Is Smaller Than Or Equal

To,

For integers and real numbers,
and Dates

<

Is Less, Less, Is Less Than, Is Smaller,
Smaller, Is Smaller Than

For integers and real numbers,
and Dates

Is True

For booleans

Is False

For booleans

Is Empty

A string is considered “empty”
if it is either “null” or contains
only zero or more whitespaces

Contains

Contain

For strings only, e.g. “House”
contains “use”. The
comparison is not case-
sensitive

Starts
With

Start with, Start

For strings only, e.g. “House”
starts with “ho”. The
comparison is not case-
sensitive

Match

Matches, Is Like, Like

Compares if the string matches
a regular expression

No
Match

NotMatch, Does Not Match, Not Like,
Is Not Like, Different, Different From

Compares if a string does not
match a regular expression

Within

Inside, Inside Interval, Interval

For integers and real numbers.

The interval can be defined as:
[0;9], (1;20], 5-10, between 5

and 10, more than 5 and less or
equals 10 — see more

Is One Of

Is One, Is One of Many, Is Among,
Among

For integer and real numbers,
and for strings. Checks if a
value is among elements of the
domain of values listed
through comma

Is Not
One Of

Is not among, Not among

For integer and real numbers,
and for strings. Checks if a
value is NOT among elements
of the domain of values listed
through comma

Include

Include All

To compare two arrays.
Returns true when the first
array (decision variable)
include all elements of the
second array (value within
decision table cell)

220

OpenRules, Inc.

OpenRules® User Manual

Exclude

Do Not Include, Exclude One Of

To compare an array or value
with an array

Does Not
Include

Include Not All

To compare two arrays.
Returns true when the first
array (decision variable) does
not include all elements of the
second array (value within
decision table cell)

Intersect

Intersect With, Intersects

To compare an array with an
array

If the decision variables do not have an expected type for a particular operator,

the proper syntax error will be diagnosed.

The following operators can be used inside decision table conclusions:

Is

Assigns one value to the conclusion
decision variable. When you use “=" or
“=="inside Excel write’’=" or’’=="to
avoid confusion with Excel’s own

formulas.

Are

Assigns one or more values listed
through commas to the conclusion
variable that is expected to be an array

Add

Adds one or more values listed through
commas to the conclusion variable that is
expected to be an array

Assign
Plus

Takes the conclusion decision variable,
adds to it a value from the rule cell, and
saves the result in the same decision
variable.

Assign
Minus

Takes the conclusion decision variable,
subtracts from it a value from the rule
cell, and saves the result in the same
decision variable.

Assign
Multiply

Takes the conclusion decision variable,
multiplies it by a value from the rule cell,
and saves the result in the same decision
variable.

Assign
Divide

Takes the conclusion decision variable,
divides it by a value from the rule cell,
and saves the result in the same decision
variable.

230

OpenRules, Inc. OpenRules® User Manual

Using Regular Expressions in Decision Table Conditions

OpenRules® allows you to use standard regular expressions. Operators "Match"

and "No Match" (and their synonyms from the above table) allow you to match
the content of your text decision variables with custom patterns such as phone
number or Social Security Number (SSN). Here is an example of a decision table

that validates SSN:

DecisionTable testSSN

Condition Message
SSN Message
No .
Match \d{3}-\d{2}-\d{4} Invalid SSN
Match \d{3}-\d{2}-\d{4} Valid SSN

The use of this decision table is described in the sample project
“DecisionHelloJava”.
Conditions and Conclusions without Operators

Sometimes the creation of special columns for operators seems unnecessary,
especially for the operators “Is” and “Within”. OpenRules® allows you to use a

simpler format as in this decision table:

DT DefineGreeting |

If Then
Cﬂgﬁrm Greeting
0-11 Good Morning
11-17 Good Afternoon
17-22 Good Evening
22-24 Good Night

As you can see, instead of keywords “Condition” and “Conclusion” we use the
keywords “If” and “Then” respectively. While this decision table looks much

simpler in comparison with the functionally identical decision table defined

24©

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html#sum

OpenRules, Inc. OpenRules® User Manual

above, we need to make an implicit assumption that the lower and upper bounds

for the intervals “0-11”, “11-17”, etc. are included.

Using Decision Variable Names inside Decision Table Cells

When your decision table contains too many columns it may become too wide and
unmanageable. In practice large decision tables have many empty cells because
not all decision variables participate in all rule conditions even if the proper
columns are reserved or all rules. To make your decision table more compact,
OpenRules® allows you to move a variable name from the column title to the rule
cells. To do that, instead of the standard column’s structure with two sub-

columns

Condition
Variable Mame

Oper | Value

you may use another column representation with 3 sub-columns:

ConditionVarOpervalue
Attribute
Variable Name | Oper | Value

This way you may replace a wide table with many condition columns like the one

below:

DecisionTable classifcationRules

Condition Condition Condition
C_OTH_EXPMNS_AMT |A_ESTATE_TAX_AMT Attribute
= 398 == 10054 Oper Value Is High = 66
Is Low = 63
== 53 Is Low = 49
Is Low = 66
Is Low = 78
Is Other = 56

to a much more compact table that may look as follows:

250

OpenRules, Inc. OpenRules® User Manual

DecisionTable classifcationRules

ConditionVarOperValue ConditionVarOperValue | ConditionVarOperValue
Attribute Attribute - Attribute

C_OTH_EXPNS_AMT| == 398 |A ESTATE TAX A ==| 10054 Attribute | Oper| Value High

E_PRTSCRP _TOT L{ =<=| -6955 |AGIL_TPI_RATIO |<=]0.95993 Is Low =| B3

C_OTH_EXPNS_AMT| == 83 ORD DIVIDENDS == | BB17 Is Low = 4%

TAXABLE_INC_TPI_R]== [0.810447|TENT TAX_AMT |==| 301630 Is Low =| B6

DIVIDENDS_AND_INT| == 12348 |EXTNSN_PYMNT |<= | 30000 Is Low = Td
s Other =| 56

You simply replace a column of the type “Condition” to the one that has the
standard type “ConditionVarOperValue”. Similarly, instead of a column of the
type “Conclusion” you may use a column of the type “ConclusionVarOperValue”
with 3 sub-columns that represent:

- Decision variable name

- Operator

- Value.

Using Formulas inside Decision Tables

OpenRules® allows you to use formulas in the rule cells instead of constants. The

formulas usually have the following format:

::= (expression)

where an “expression” can be written using standard Java expressions. Here is
an example:

DecisionTable CalculateAdjustedGrossincome

Conclusion
Adjusted Gross Income

= (getReal("Wages") + getReal("Taxable Interest") +
getReal("Unemployment Compensation™))

This decision table has only one conclusion that simply calculates a value for the
decision variable “Adjusted Gross Income” as a sum of values for the decision
variables “Wages”, “Taxable Interest”, and “Unemployment Compensation”. This
example also demonstrates how to gain access to different decision variables —
you may write getReal(“VARIABLE_NAME”) for real decision variables.
Similarly, you may use methods getlnt(...), getBool(...), getDate(...), and
getString(...).

26 ©

OpenRules, Inc. OpenRules® User Manual

You may also put your formula in a specially defined Method and then refer to
this method from the decision table — observe how it is done in the following

example:

Method double taxablelncome()
return getReal("Adjusted Gross Income”) - getReal("Dependent Amount™);

DecisionTable Calculate Taxablelncome

ConditionAny Conclusion
Condition Taxable Income
Is True = (taxablelncome() = 0) Is = taxablelncome()
Is False = (taxablelncome() = 0) Is 0

Here we defined a new method “taxablelncome()” that returns a real value using
the standard Java type “double”. Then we used this method inside both

conditions and one conclusion of this decision table.

Note. Actually the formula format ::= (expression) is a shortcut for a more

(154

standard OpenRules® formula format := “’ +(expression) that also can be used

inside decision tables.

Direct References to Decision Variables

You may want to refer to values of some decision variables inside cells for
different tables. To do that, you may simply put a dollar sign (“$”) in front

of the variable name. For example, in the following table

DT DefineWhomToCharge

Condition Condition Conclusion
Vendor Provider Charged Entity
ls Empty | FALSE Is $Vendor
|s Empty TRUE Is UMK OWN
Iz Mot | ABC, KLM,)
One Of vz Is SProvider

the conclusion-column contains references $Vendor and $Provider to
the values of decision variables Vendor and Provider. The reference
S$Vendor is similar to the formula : := getString (“Vendor”). You may

also use similar references inside arrays. For example, to express a

270

OpenRules, Inc. OpenRules® User Manual

condition that a Vendor should not be among providers, you may use the

operator “Is Not One Of” with an array “ABC, $Vendor, XYZ”.

Defining Business Glossary

While defining decision tables, we freely introduced different decision variables
assuming that they are somehow defined. The business glossary is a special
OpenRules® table that actually defines all decision variables. The Glossary table

has the following structure:

Glossary glossary

Variable Business Concept Attribute Domain

The first column will simply list all of the decision variables using exactly the
same names that were used inside the decision tables. The second column
associates different decision variables with the business concepts to which they
belong. Usually you want to keep decision variables that belong to the same
business concept together and merge all rows in the column “Business Concept”
that share the same concept. Here is an example of a glossary from the standard

OpenRules® example “DecisionLoan”:

280©

OpenRules, Inc. OpenRules® User Manual

Glossary glossary

Variable Object Attribute Domain
Monthly Income monthlylncome 0-5000000
Mortgage Holder mortgageHolder Yes,MNo
Qutside Credit Score outsideCreditScore 0-999
Loan Holder loanHolder Yes Mo
Customer
Credit Card Balance creditCardBalance -1000000 - 100000000
Education Loan Balance educationLoanBalance (-1000000 - 100000000
Internal Credit Rating internalCreditRating ABCDF
Internal Analyst Opinion internalAnalystOpinion |High,Mid,Low
Income Validation Result incomeValidationResult | SUFFICIENT UNSUFFICIENT,?
Debt Research Result Request |debtResearchResult High Mid Low,?
Loan Qualification Result loanQualificationResult [QUALIFIED, NOT QUALIFIED, ?
Total Income totallncome 0-500000
Internal
Total Debt totalDebt 0-500000

All rows for the concepts such as “Customer” and “Request” are merged.

The third column “Attribute” contains “technical” names of the decision variables
— these names will be used to connect our decision variables with attributes of
objects used by the actual applications, for which a decision has been defined.
The application objects could be defined in Java, in Excel tables, in XML, etc.
The decision does not have to know about it: the only requirement is that the
attribute names should follow the usual naming convention for identifiers in
languages like Java: it basically means no spaces allowed. The last column,
“Domain”, is optional, but it can be useful to specify which values are allowed to
be used for different decision variables. Decision variable domains can be
specified using the naming convention for the intervals and domains described
below. The above glossary provides a few intuitive examples of such domains.

These domains can be used during the validation of a decision.

Defining Test Data

29©

OpenRules, Inc.

OpenRules® User Manual

OpenRules® provides a convenient way to define test data for decisions directly

in Excel without the necessity of writing any Java code. A non-technical user

can define all business concepts in the Glossary table using Datatype tables. For

example, here is a Datatype table for the business concept “Customer” defined

above:

Datatype Customer

Siring fullName

Siring SSN

int monthlylncome

int monthlyDebt

Siring mortgageHolder

int outsideCreditScore
Siring loanHolder

int creditCardBalance

int educationLoanBalance
Siring internalCreditRating
Siring internalAnalystOpinion

The first column defines the type of the attribute using standard Java types such

as “int”, “double”, “Boolean”, “String”, or “Date”. The second column contains the

same attribute names that were defined in the Glossary. To create an array of

objects of the type “Customer” we may use a special “Data” table like the one

below:

; 5 mongageHol | outsiceCraditse radecar | BOUOnL | raiCred |inemaianal
‘ S Lame SN marthincome | monthtyDett 2’3" o loarkolder | c | nnrﬂ:&nm iRation | yetOpinken
|
Credit |Education| Internal Insernal
Borrower Full Name| Borrower SSN Yrordh | montniyDepe | MortGage |Outside Creditl |y yioiger | Card | Losn | Credit | Anayst
Balance | Balance | Rating | Opinion
:l»’-:(r:l N._Johnson 15782.5044 000 2300 Yes | 720 No 2500 | 0 I | Low
{Mary K_Brown 0S5 3 AN 2800 No | a0 No_ E54 I 23800 | B |__Low
{Robest Cooper 241580082 6400 2000 Yeu 735 AL 200 | (| C 1 Md

This table is too wide (and difficult to read), so we could actually transpose it to a

more convenient but equivalent format:

300

OpenRules, Inc.

OpenRules® User Manual

Data Customer customers
fullName Borrower Full Name Peter N. Mary K. Brown Robert
Johnson Cooper Jr.
SSN Borrower SSN 157-82-5344 056-45-8233 | 241-56-9082
monthlylncome Monthly Income 5000 4300 5400
monthlyDebt Monthly Debt 2300 2800 2800
mortgageHolder Mortgage Holder Yes No Yes
outsideCreditScore Outside Credit Score 720 6520 735
loanHolder Loan Holder No No Yes
creditCardBalance Credit Card Balance 2500 5654 1200
educationLoanBalance Education Loan 0 23800 0
Balance
internalCreditRating Internal Credit Rating A B C
internalAnalystOpinion Inlerna_l ﬁ_\nalysl Low Low Mid
Opinion

Now, whenever we need to reference the first customer we can refer to him as

customers[0]. Similarly, if you want to define a doubled monthly income for the

second custromer, “Mary K. Brown”, you may simply write

You can find many additional details about data modeling in this section.

(customers[1] .monthlyIncome * 2)

Connecting the Decisions with Business Objects

To tell OpenRules® that we want to associate the object customers[0] with our

business concept “Customer” defined in the Glossary, we need to use a special

table “DecisionObject” that may look as follows:

DecisionObject decisionObjects

Business Concept Business Object
Customer := customers[0]
Request .= loanRequests[0]
Internal .= internal

Here we also associate other business concepts namely Request and Internal
with the proper business objects — see how they are defined in the standard

example “DecisionLoan”.

31©

OpenRules, Inc. OpenRules® User Manual

The above table connects a decision with test data defined by business users
directly in Excel. This allows the decision to be tested. However, after the
decision is tested, it will be integrated into a real application that may use
objects defined in Java, in XML, or in a database, etc. For example, if there are
instances of Java classes Customer and LoanRequest, they may be put in the
object “decision” that is used to execute the decision. In this case, the proper

table “decisionODbjects” may look like:

DecisionObject decisionObjects

Business Concept Business Object
Customer .= decision.get("customer"”)
Request = decision.get("loanRequests")
Internal = internal

It is important that Decision does not “know” about a particular object
implementation: the only requirement is that the attribute inside these objects

should have the same names as in the glossary.

Note. You cannot use the predefined function “decision()” within the table
“decisionODbjects” because its content is be not defined yet. You need to use the

internal variable “decision” directly.

Decision Execution

OpenRules® provides a template for Java launchers that may be used to execute

different decisions. There are OpenRules® API classes OpenRulesEngine and

Decision. Here is an example of a decision launcher for the sample project

“DecisionLoan”:

320

OpenRules, Inc. OpenRules® User Manual

import com.openrules.ruleengine.Decision;

public class Main {
public static void main(String[] args) {
String fileMame = "file:rules/main/Decision.xls";
Decision decision = new Decision("DetermineloanPreQualificationResults",fileName);

decision.execute();
¥
Actually, it just creates an instance of the class Decision. It has only two

parameters:

1) a path to the main Excel file “Decision.xls”

2) amname of the main Decision inside this Excel file.

When you execute this Java launcher using the provided batch file “run.bat” or
execute it from your Eclipse IDE, it will produce output that may look like the

following:

*** Decision DetermineloanPreQualificationResults ***

Decision has been initialized

Decision DetermineLoanPreQualificationResults: Calculate Internal
Variables

Conclusion: Total Debt Is 165600.0

Conclusion: Total Income Is 360000.0

Decision DeterminelLoanPreQualificationResults: Validate Income
Conclusion: Income Validation Result Is SUFFICIENT

Decision DeterminelLoanPreQualificationResults: Debt Research
Conclusion: Debt Research Result Is Low

Decision DetermineloanPreQualificationResults: Summarize
Conclusion: Loan Qualification Result Is NOT QUALIFIED
ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineLoanQualificationResult
*** OpenRules made a decision ***

This output shows all sub-decisions and conclusion results for the corresponding

decision tables.

Decision Analysis

Decision Testing

OpenRules® provides an ability to create a test harness comprised of an
executable set of different test cases. It is important that the same people who

design rules (usually business analysts) are able to design tests for them.

330

OpenRules, Inc. OpenRules® User Manual

Usually they create test cases directly in Excel by specifying their own
data/object types and creating instances of test objects of these types. Read more

at the section Defining Test Data.

Decision Syntax Validation

OpenRules® allows you to validate your decision by checking that:
there are no syntax error in the organization of all decision tables
values inside decision variable cells correspond to the associated domains

defined in the glossary.

The validation template is described in the standard file

“DecisionTableValidateTemplates.xls”.

If you use the Eclipse Plugin, it will display...

OpenRules® also provides a special plugin for Eclipse IDE, a de-facto
standard project management tools for software developers within a Java-based
development environment. Eclipse is used for code editing, debugging, and
testing of rule projects within a single commonly known integrated development
environment. OpenRules® has been designed to catch as many errors as possible
in design-rime vs. run-time when it is too late. OpenRules® Plugin automatically
diagnoses errors in the Excel-files and displays the proper error messages inside

Eclipse views like at the picture below:

340

http://www.eclipse.org/

OpenRules, Inc. OpenRules® User Manual

& Java - RunHelloCustomer.java - Eclipse SDK 1 15 ol x
File Edit Source Refactor Navigate Search Project Run Window Help
RS R aE =8 0 S | E@we- | @ |a-] 21 (8 e
J;’~-.',-{!‘j(;3v;-
r o g
{2 pack... S@\iera... LNavi... = O || 3] runHelloCustomer java ﬁ\ =0
2 (N3 § 7 A
T el i : : ine. ine; -
E"fx_?o s ZI import com.openrules.ruleengine.COpenRulesEngine
568 oc . .
Ela hello public class RunHelloCustomer {
¢ @-[J] customer.java 0| | _":'
- E] Response.java
: v s = -)
; - [J] RunHelloCustomer java PronlJavadochedaraﬁonnga'dtorngl Ex Eﬁl Ee D
P l°94j"p'°pe'ﬁe5 ~—|openRules Console
B rues/main ** Sep 10,2006 05:21:35 PM — HelloJdava [C:/OpenRules300/workspace/Hellal
j #8] Helocustomer.xis Exror: Method defineGreetingX(int,hello.Response) not found
B rules Invalid Code Fragment: frn
Bl indude
5--:@Hellol3ules.xls lint hour = Calendar.getInstance().get (Calendar.HOUR OF DAY);
~[aib buid.properties defineGreetingX (hour, response):
-] build. xml B s
! compile.bat defineSalutation (customer,response);
+ o] readme. txt out("From Rules: " + response.map.get("greeting") + ", " +
run.bat
o120
U bl:hallo]sp at file:/C: enRules300/workspace/HelloJdava/rules/main/HelioCustc
| BB src
i choc ‘1 T =
4 | |la | 3
e |

Eclipse Plugin diagnoses any errors in Excel-files before you even deploy or run
your OpenRules-based application. To make sure that Eclipse controls your
OpenRules® project, you have first to right-click to your project folder and "Add
OpenRules Nature". You always can similarly "Remove OpenRules Nature". To
be validated, your main xlIs-files should be placed into an Eclipse source folder
while all included files should be kept in regular (non-source) folders.
OpenRules® Plugin displays a diagnostic log with possible errors inside the
Eclipse Console view. The error messages include hyperlinks that will open the

proper Excel file with a cursor located in a cell where the error occurred.

Decision Execution Reports

OpenRules® provides an ability to generate decision execution reports in the
HTML-format. To generate an execution report, you should add the following

setting to the decision’s Java launcher:

decision.put ("report", "On");

350

OpenRules, Inc. OpenRules® User Manual

before calling decision.execute (). By default, execution reports are not
generated as they are needed mainly for decision analysis. Reports are

regenerated for every decision run.

During decision execution, OpenRules® automatically creates a sub-directory
“report” in your main project directory and generates a report inside this sub-
directory. For every decision table, including single-hit, multi-hit, and rule
sequencing tables, OpenRules® generates a separate html-file with the name
Report<n>.<DecisionTableName>.html, where n 1is an execution order
number for this particular decision table. For example, for the sample project

“DecisionLoan” OpenRules® will generate the following files:

6' Report.Determinel canPreQualificationResults.html
@' Report0l.DetermineloanPreQualificationResults.html
€ Repori02.CalculatelnternalVariables.html

€ Repori03.DeterminelncomeValidationResult.html

¢ Reportl4.DetermineDebtResearchResult.htrml

G' Reportl5.DetermineloanQualificationResult.html

The first file contains a list of links to all executed decision tables:

OpenRules Execution Report of Sat Jan 05 11:19:49 EST 2013

Decision "DetermineL.oanPreQualificationResults"

Decision Table

1 || Determinel.oanPreQualificationResulis

2 CalculateInternalVariables
3 DeterminelncomeValidationR esult
4 DetermineDebiResearchResult

) |

DeterminelLoanQualificationResuli

36 ©

OpenRules, Inc. OpenRules® User Manual

Below are other generated files (one per decision table) with lists of rules (rows)

that were actually executed:

Decision Table "DetermineL.oanPreQualificationResults" (Rule Sequence)

Executed

ActionExecute

Decisions Execute Rules

Calculate Internal Variables = CalculatelnternalVariables()
Validate Income = DeterminelncomeValidationR esuli()
Debt Research = DetermineDebtResearchR esuli()
Summatize = Determinel oanQualificationR esult()

Decision Table "CalculateInternalVariables" (Single-Hit)

Executed
© Conchision Conchision
Rule

Total Debt Total Income

Is == getlnt("Monthly Debt") * getlnt("Loan Term") || Is := getlnt("Monthly Income") * getlnt("Loan Term")

Decision Table "DetermineIncomeValidationResult" (Single-Hit)

Executed I . ,
Condition Conclusion
Rule

Total Income Income Validation Result
Is More Than == getlnt("Total Debt") * 2 Is SUFFICIENT

Decision Table “DetermineDebtResearchResult™ (Single-Hir)

Condson C ~ oo Condhion < hon Condtion

Oﬂ))dt C n-dn Outside Credit Lon CreditCard | FEdocation Loan
Score Score Holder Bakace Balance

Holder Ratmg Opimion Resuie

e | |] T

Mortgage Internal Credit Internal Analyst | Debt Research

370

OpenRules, Inc. OpenRules® User Manual

Decision Table "Determinel.oanQualificationResult" (Single-Hit)

uted
Condition Condition Conclusion
Rule

[n(:ome Validation Result || Deht Research Result || Loan Qualification Result

Is SUFFICIENT Is One Of Mid. High Is QUALIFIED

These reports help a rule designer to analyze which rules were actually executed
and in which order. The “Executed Rule #’ corresponds to the sequential number

of a rule inside 1ts decision table.

Note. Execution reports are intended to explain the behavior of certain decision
tables and are used mainly for analysis and not for production. If you turn on
report generation mode in a multi-threaded environment that shares the same
instance of OpenRulesEngine, the reports will be produced only for the first

thread.

Decision Tracing

OpenRules® relies on the standard Java logging facilities for the decision output.
They can be controlled by the standard file “log4j.properties” that by default
looks like below:

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4dj.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%m%n
#log4j.logger.org.openl=DEBUG

You may replace INFO to DEBUG and uncomment the last line to see OpenRules
debugging information. To redirect all logs into a file “results.txt” you may

change the file “log4j.properties” as follows:

log4j.rootLogger=INFO, stdout
#log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout=org.apache.log4j.FileAppender
log4j.appender.stdout.File=results.txt
log4dj.appender.stdout.layout=org.apache.log4j.PatternLayout
log4dj.appender.stdout.layout.ConversionPattern=%m%n

uncomment the next line to see OpenRules debug messages
#log4j.logger.org.openl=DEBUG

380

OpenRules, Inc. OpenRules® User Manual

You may control how “talkative” your decision is by setting decision’s parameter

“Trace”. For example, if you add the following setting to the above Java launcher

decision.put ("trace", "Off");

just before calling decision.execute(), then your output will be much more
compact:
*** Decision DeterminelLoanPreQualificationResults ***
Decision DetermineloanPreQualificationResults: Calculate Internal
Variables
Decision DeterminelLoanPreQualificationResults: Validate Income
Decision DeterminelLoanPreQualificationResults: Summarize

ADDITIONAL DEBT RESEARCH IS NEEDED from DetermineloanQualificationResult
*** OpenRules made a decision ***

You may also change output by modifying the tracing details inside the proper
decision templates in the configuration files “DecisionTemplates.x1s” and

“DecisionTableExecuteTemplates.xls”.

Rules Repository Search

To analyze rules within one Excel files you may effectively use familiar Search

and Replace features provided by Excel or Google Docs.

When you want to search across multiple Excel files and folders, you may use a

free while powerful tool called “IceTeaReplacer” that can be very useful for doing

search & replace in OpenRules repositories. The following options are available:
e Perform search before replacing

e Match whole word only

e Ignore word case

e Do backup before replace

e Deselect files on which you don’t want to perform replace.

Here is an example of its graphical interface:

390

http://www.icetear.com/

OpenRules, Inc. OpenRules® User Manual

Searchfor, Martal Satus
Replace with:
Searchpath: C_SourceRepo\openndes solver\DMN Primer

outeBapo opantule

C _SameRapo\noam.lu\DMN Punar\moodory:dl

C)_SourczRepo'\opervules solver\DMN Prmer\repostory \Decisions\PrePost BureauRisk \Applcation ScoreRules ds

[7] Match whole word anly
I7] igrore case

| Backup before replace
[| Don search in subfolders

| Select Al | [Select None | Hokd CTRL or SHIFT buttons to select. You may also double-<lick an item to apen .

| Done searching. Found 3 matches. Select needed files and click replace.

Consistency Checking

OpenRules® provides a special component Rule Solver™ that along with powerful
optimization features allow a user to check consistency of the decision models
and find possible conflicts within decision tables and across multiple decision
tables. The detail description of the product can be found at

http://openrules.com/pdf/RulesSolver.UserManual.pdf.

ADVANCED DECISION TABLES

In real-world project you may need more complex representations of rule sets
and the relationships between them than those allowed by the default decision
tables. OpenRules® allows you to use advanced decision tables and to define

your own rule sets with your own logic.
Specialized Conditions and Conclusions

The standard columns of the types “Condition” and “Conclusion” always have
two sub-columns: one for operators and another for values. OpenRules® allows
you to specify columns of the types “If’ and “Then” that do not require sub-
columns. Instead, they allow you to use operators or even natural language

expressions together with values to represent different intervals and domains of

400

http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://openrules.com/rulesolver.htm
http://openrules.com/pdf/RulesSolver.UserManual.pdf

OpenRules, Inc. OpenRules® User Manual

values. Read about different ways to represent intervals and domains in this

section below.

Sometimes your conditions or actions are not related to a particular decision
variable and can be calculated using formulas. For example, a condition can be
defined based on combination of several decision variables, and you would not
want to artificially add an intermediate decision variable to your glossary in
order to accommodate each needed combination of existing decision variables. In

such a case, you may use a special type “ConditionAny” like in the example

below:
ConditionAny Conclusion
Condition Taxable Income
Is True = (taxablelncome() = 0) Is = taxablelncome()
Is False = (taxablelncome() = 0) Is 0

Here the word “Condition” does not represent any decision variable and instead
you may insert any text, i.e. “Compare Adjusted Gross Income with Dependent
Amount”. When your conclusion, does not set a value for a single decision
variable but rather does something that is expressed in the formulas within the
cells of this column, you should use a column of type “ActionAny”. It does not

have sub-columns because there is no need for an operator.

Note. There is also a column of type “Action” that is equivalent to type “Then”.
Specialized Decision Tables

Sometimes the default behavior of a DecisionTable (as single-hit rules tables) is
not sufficient. OpenRules® provide two additional types of decision tables
DecisionTablel (or DT1) and DecisionTable2 (or DTZ2). While we recommend
avoiding these types of decision tables, in certain situations they provide a

convenient way around the limitations imposed by the standard DecisionTable.

DecisionTablel

41 ©

OpenRules, Inc. OpenRules® User Manual

Contrary to the standard DecisionTable that is implemented as a single-hit rules
table, decision tables of type “DecisionTablel” or “DecisionTableMultiHit” are
implemented as multi-hit decision tables. “DecisionTablel” supports the

following rules execution logic:

1. All rules are evaluated and if their conditions are satisfied, they will be
marked as “to be executed”

2. All actions columns (of the types “Conclusion”, “Then”, “Action”,
“ActionAny”, or “Message”) for the “to be executed” rules will be executed

in top-down order.

Thus, we can make two important observations about the behavior of the

“DecisionTablel”:

e Rule actions cannot affect the conditions of any other rules in the decision
table — there will be no re-evaluation of any conditions
e Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

Let’s consider an example of a rule that states: “A person of age 17 or older is
eligible to drive. However, in Florida 16 year olds can also drive”. If we try to

present this rule using the standard DecisionTable, it may look as follows:

DecisionTable ValidateDrivingEligibility

Condition Condition Conclusion
Driver's Age US State Driving Eligibility

= 17 Is Eligible
Is 16 Is Mot Florida Is Mot Eligible

ls 16 ls Florida Is Eligible
< 16 Is Mot Eligible

Using a non-standard DecisionTablel we may present the same rule as:

42 ©

OpenRules, Inc. OpenRules® User Manual

DecisionTable1 ValidateDrivingEligibility

Condition Condition Conclusion
Driver's Age US State Driving Eligibility
Is Eligible
< 17 Is Mot Eligible
> 16 Is Flarida Is Eligible

In the DecisionTablel the first unconditional rule will set “Driving Eligibility” to
“Eligible”. The second rule will reset it to “Not Eligible” for all people younger
than 17. But for 16 year olds living in Florida, the third rule will override the

variable again to “Eligible”.

DecisionTable2

There is one more type of decision table, “DecisionTable2,” that is similar to
“DecisionTablel” but allows the actions of already executed rules to affect the
conditions of rules specified below them. “DecisionTable2” supports the following

rules execution logic:

1. Rules are evaluated in top-down order and if a rule condition is satisfied,
then the rule actions are immediately executed.
2. Rule overrides are permitted. The action of any executed rule may

override the action of any previously executed rule.

Thus, we can make two important observations about the behavior of the

“DecisionTable2”:

e Rule actions can affect the conditions of other rules
e There could be rule overrides when rules defined below already executed

rules could override already executed actions.

Let’s consider the following example:

430©

OpenRules, Inc. OpenRules® User Manual

DecisionTable? CalculateTaxablelncome

Condition Conclusion

Taxable Income Taxable Income

= (getReal("Adjusted Gross Income”) -
getReal("Dependent Amount™))

Is Less 1] Is 0

Here the first (unconditional) rule will calculate and set the value of the decision
variable “Taxable Income”. The second rule will check if the calculated value is

less than 0. If it is true, this rule will reset this decision variable to O.

Business Rules Defined on Collections of Objects

Previously, when OpenRules® users needed to run decisions against collections
(arrays) of business objects, they needed to use Java loops. This release adds
an ability to execute one decision against a collection of objects and to calculate

values defined on the entire collection within single decision run.

Let's consider an example "DecisionManyCustomers" added to the standard
OpenRules® installation. There is a standard Java bean Customer with
different customer attributes such as name, age, gender, salary, etc. There is

also a Java class "CollectionOfCustomers":

public class CollectionOfCustomers {
Customer|[] customers
int minSalary
int maxSalary
int numberOfRichCustomers
int totalSalary

We want to pass this collection to a decision that will process all customers

from this collection in one run and will calculate such attributes as

44©

OpenRules, Inc. OpenRules® User Manual

nn

"minSalary", "totalSalary", "numberOfRichCustomers", and similar attributes,
which are specified for the entire collection. Each customer within this

collection can be processed by the following rules:

DecisionTable1 EvaluateOneCustomer

Condition | Conclusio Conclusion Conclusion Conclusion Conclusion
Number of Rich . AT
Salary Wealth Total Salary Cust = Maximal Salary Minimal Salary
+= | ;= getint("Salary”) Max| ::= getint("Salary”) |[Min| == getint("Salary”)
= 1100000 Is | Rich A= 1

Pay attention that we use here a multi-hit table (DecsionTablel), so both rules
will be executed. The first one unconditionally calculate the total. max, and
min salaries. The second rule defines a number of "rich" customers inside the
collection. To accumulate the proper values, we use the existing operator "+="

and newly introduced operators "Min" and "Max".

To execute the above decision table for all customers, we will utilize a new

action "ActionRulesOnArray" within the following decision table:

DecisionTable CalculateCustomerTotals

Conclusion Conclusion Conclusion ActionRulesOnArray

Total Salary |Maximal Salary | Minimal Salary | AT | ohiect Type Rules
Objects

Is 0 Is 0 Is 1000000 | Customers Customer EvaluateOneCustomer

Here the first 3 actions (conclusions) simply define initial values of collection

attributes. The last action has 3 sub-columns:

- The name of the array of objects as it is defined in the glossary
("Customers")

- The type of those objects ("Customer")

- The name of the decision table ("EvaluateOneCustomer") that will be

used to processes each objects form this collection.

Thus, a combination of the two decisions tables (similar to the above ones)
provides business users with a quite intuitive way to apply rules over
collections of business objects without necessity to deal with programming

constructions.

450

OpenRules, Inc. OpenRules® User Manual

Decision Tables for Comparing Ranking Lists

In many real-world situations decisions are made based on comparison of
attributes that belong to different predefined lists of values while the values
inside these lists are ordered (ranked). For example, a business rule may

sound as follows:
"If Diagnostic Need is Stronger Than Sensitivity Level
Then Document Access should be Allowed"
Here the Diagnostic Need could belong to the ranking list:
1. Immediately Life-Threatening
2. Life-Threatening
3. Acute
4. Chronic.

Similarly the Sensitivity Level could belong to this ranking list:

1. High
2. Mid
3. Low.

Newly defined custom templates allow us to present the relations between
these two ranking lists in the following decision table of the new type

"DecisionTableCompareRanks":

DecisionTableCompareRanks CompareDiagnosticNeedWithSensitivityLevel

Diagnostic Need ensitivity Level High Mid Low
Immediately Life-Threatening Stronger Stronger Stronger
Life-Threatening Weaker Stronger Stronger
Acute Weaker Weaker Weaker
Chronic Weaker Weaker Weaker

Then the above rule may be expressed using the following decision table of the

new type "DecisionTableRanking":

46 ©

OpenRules, Inc. OpenRules® User Manual

DecisionTableRanking DefineDocumentAccess

ConditionCompareRanks Conclusion
If Doc:
<rank1> <stronger/weaker> <rank2> AIGHE ACEORR
Diagnostic Need | Stronger Sensitivity Level Is Allow
Diagnostic Need Weaker Sensitivity Level Is Decline

To define "Stronger/Weaker" relations between these ranks, this decision table
will automatically invoke the decision table with the dynamically defined

name "Compare<rankI>With<rank2>" (after removing all spaces).

The benefits of these new types of decision tables become clear when you think
about supporting hundreds of similar ranking lists. These tables may cover
complex relationships between multiple ranking lists and at the same time

they remain easy to understand and to be maintained by business users.

The complete working example "DecisionRankingLists" with the proper
custom templates (see file "RankTemplates.xls") is included into the standard

OpenRules® installation.

RULE TABLES

OpenRules® supports several ways to represent business rules inside Excel
tables. Default decision table is the most popular way to present sets of related
business rules because they do not require any coding. However, there classical
decision tables can represent more complex execution logic that is frequently

custom for different conditions and actions.

Actually, standard DecisionTable is a special case of an OpenRules® single-hit
decision table that is based on a predefined template (see below). Since 2003,
OpenRules® allows its users to configure different types of custom decision tables
directly in Excel. In spite of the necessity to use Java snippets to specify custom
logic, these tables are successfully used by major corporations in real-world
decision support applications. This chapter describes different decision tables
that go beyond the default decision tables. It will also describe how to use simple

IF-THEN-ELSE statements within Excel-based tables of type "Method".

47©

OpenRules, Inc. OpenRules® User Manual

Simple Rule Table

Let's consider a simple set of HelloWorld rules that can be used to generate a
string like "Good Morning, World!" based on the actual time of the day. How one

understands such concepts as "morning", "afternoon", "evening", and "night" is

defined in this simple rules table:

oid helloyorld{int hour)
Hour From Hour To Greeting
0 11 ood Morming
12 17 Zood Afternoon
18 22 Zood BEvening
23 24 Good Might

Hopefully, this rule table is not much more difficult to compare with the default
DecisonTable. It states that if the current hour is between 0 and 11, the greeting
should be "Good Morning", etc. You may change Hour From or Hour To if you
want to customize the definition of "morning" or "evening". This table is also
oriented to a business user. However, its first row already includes some

technical information (a table signature):

Rules void helloWorld(int hour)

Here "Rules" is an OpenRules® keyword for this type of tables. "helloWorld" is
the name of this particular rules table. It tells to an external program or to other
rules how to launch this rules table. Actually, this is a typical description of a
programming method (its signature) that has one integer parameter and returns
nothing (the type "void"). The integer parameter "hour" is expected to contain the
current time of the day. While you can always hide this information from a

business user, it is an important specification of this rule table.

You may ask: where is the implementation logic for this rule table? All rule
tables include additional hidden rows (frequently password protected) that you

can see if you click on the buttons "+" to open the Technical View below:

48 ©

OpenRules, Inc. OpenRules® User Manual

12| A B | = | D
1
2
o Rules void helloWorld{int hour)
4 fi) C2 A
5 min <= hour |(hour <= max |System.out printin{gresting + ", YWorld!™)
6 int min int max string gresting
FL e Hour From Hour To Greeting
g 1] 11 Zood Morning
g 12 17 izood Afternoon
10 18 22 Zood Evening
11 23 24 Good Might
12
This part of the rule table is oriented to a technical user, who is not expected to

be a programming guru but rather a person with a basic knowledge of the "C"

family of languages which includes Java. Let's walk through these rows step by

step:

Row "Condition and Action Headers" (see row 4 in the table above). The

initial columns with conditions should start with the letter "C", for example
"C1", "Condition 1". The columns with actions should start with the letter
"A" for example "A1", "Action 1".

Row "Code" (see row 5 in the table above). The cells in this row specify the

semantics of the condition or action associated with the corresponding
columns. For example, the cell B5 contains the code min <= hour. This
means that condition C1 will be true whenever the value for min in any cell
in the column below in this row is less than or equals to the parameter hour.
If hour is 15, then the Cl-conditions from rows 8 and 9 will be satisfied.
The code in the Action-columns defines what should be done when all

conditions are satisfied. For example, cell D5 contains the code:

System.out.println(greeting + ", World!")

This code will print a string composed of the variable greeting and ", World!",

where greeting will be chosen from a row where all of the conditions are

49 ©

OpenRules, Inc.

OpenRules® User Manual

satisfied. Again, if houris 15, then both conditions C1 and C2 will be

satisfied only for row 9 (because 9 <= 15 <= 17). As a result, the words "Good

Afternoon, World!" will be printed. If the rule table does not contain a row

where all conditions have been satisfied, then no actions will be executed.

Such a situation can be diagnosed automatically.

Row "Parameters" (see row 6 in the table above). The cells in this row specify

the types and names of the parameters used in the previous row.

Row "Display Values" (see row 7 in the table above). The cells in this row

contain a natural language description of the column content.

The same table can be defined a little bit differently using one condition code for

both columns "min" and "max":

Rules void defineGreeting(App app, int hour)
C1

Al

min == hour && hour <= max

app.greeting = greeting;

int min int max String greeting
Hour From Hour To Set Greeting
0 11 Good Morning
12 17 Good Afternoon
18 22 Good Evening

23 24 Good Might

How Rule Tables Are Organized

As you have seen in the previous section, rule tables have the following

structure:

Row 1: Signature

Rules void tableName(Typel parl, Type2 par2, ..) - Multi-Hit Rule Table

Rules <JavaClass> tableName(Typel parl, Type2 par2, ..) - Single-Hit Rule

Table

Row 2: Condition/Action Indicators

50 ©

OpenRules, Inc. OpenRules® User Manual

The condition column indicator is a word starting with “C”.
The action column indicator is a word starting with “A”.
All other starting characters are ignored and the whole column is considered

as a comment

Row 3: Code

The cells in each column (or merged cells for several columns) contain Java
Snippets.

Condition codes should contain expressions that return Boolean values.

If an action code contains any correct Java snippet, the return type is

irrelevant.

Row 4: Parameters

Each condition/action may have from 0 to N parameters. Usually there is
only one parameter description and it consists of two words:

parameterType parameterName

Example: int min
parameterName is a standard one word name that corresponds to Java
identification rules.

parameterType can be represented using the following Java types:

- Basic Java types: boolean, char, int, long, double,
String, Date

- Standard Java classes: java.lang.Boolean,
java.lang.Integer, java.lang.Long, java.lang.Double,
java.lang.Character, java.lang.String, java.util.Date

- Any custom Java class with a public constructor that has a String
parameter

- One-dimensional arrays of the above types.

Multiple parameters can be used in the situations when one code is used for

several columns. See the standard example “Loanl.xls”.

510

OpenRules, Inc. OpenRules® User Manual

Row 5: Columns Display Values

Text is used to give the column a definition that would be meaningful to

another reader (there are no restrictions on what text may be used).

Row 6 and below: Rules with concrete values in cells

Text cells in these rows usually contain literals that correspond to the
parameter types.
For Boolean parameters you may enter the values "TRUE" or "FALSE" (or

equally "Yes" or "No") without quotations.

Cells with Dates can be specified using java.util.Date. OpenRules® uses
java.text.DateFormat.SHORT to convert a text defined inside a cell into
java.util.Date. Before OpenRules® 4.1 we recommended our

customers not to use Excel's Date format and define Date fields in Excel as
Text fields. The reason was the notorious Excel problem inherited from a
wrong assumption that 1900 was a leap year. As a result, a date entered in
Excel as 02/15/2004 could be interpreted by OpenRules® as 02/16/2004.
Starting with release 4.1 OpenRules® correctly interprets both Date and Text

Excel Date formats.

Valid Java expression (Java snippets) may be put inside table cells by one

of two ways:

by surrounding the expression in curly brackets, for example: {
driver.age+1; }

by putting ":=" in front of your Java expression, for example:

:=driver.age+1

Make sure that the expression's type corresponds to the parameter

type.

Empty cells inside rules means "whatever" and the proper condition is

automatically considered satisfied. An action with an empty value will be

520

http://support.microsoft.com/kb/214326/en-us

OpenRules, Inc. OpenRules® User Manual

ignored. If the parameter has type String and you want to enter a space

character, you must explicitly enter one of the following expressions:

—nn

I—nn

{" H;}

Note. Excel is always trying to "guess" the type of text inside its cells and
automatically converts the internal representation to something that may not be
exactly what you see. For example, Excel may use a scientific format for certain
numbers. To avoid a "strange" behavior try to explicitly define the format "text"

for the proper Excel cells.

Separating Business and Technical Information

During rules harvesting, business specialists initially create rule tables using
regular Excel tables. They put a table name in the first row and column names in
the second row. They start with Conditions columns and end with Action
columns. For example, they can create a table with 5 columns [C1,C2,C3,A1,A2]

assuming the following logic:
IF conditions Cl and C2 and C3 are satisfied
THEN execute actions Al and A2
Then, a business specialist provides content for concrete rules in the rows below

the title rows.

As an example, let's consider the rule table "defineSalutation" with the rules that
define how to greet a customer (Mr., Ms, or Mrs.) based on his/her gender and
marital status. Here is the initial business view (it is not yet syntactically

correct):

53©

OpenRules, Inc. OpenRules® User Manual

Rules defineSalutation
Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.

A business analyst has initially created only five rows:

A signature "Rules defineSalutation" (it is not a real signature yet)
A row with column titles: two conditions "Gender", "Marital Status" and one
action "Set Salutation"

Rows with three rules that can be read as:

1) IF Gender is “Male” THEN Set Salutation “Mr."
2) IF Gender is “Female” and Marital Status is “Married” THEN Set Salutation ‘“Mrs.”
3) IF Gender is “Female” and Marital Status is “Single” THEN Set Salutation “Ms.”

While business specialists continue to define such rule tables, at some point a
technical specialist should take over and add to these tables the actual
implementation. The technical specialist (familiar with the software
environment into which these rules are going to be embedded) talks to the
business specialist (author of the rule table) about how the rules should be used.
In the case of the "defineSalutation" rule table, they agree that the table will be
used to generate a salutation to a customer. So, the technical specialist decides

that the table will have two parameters:

1) a customer of the type Customer

2) aresponse of the type Response

The technical specialist will modify the signature row of the table to look like
this:

Rules void defineSalutation (Customer customer, Response response)

Then she/he inserts three more rows just after the first (signature) row:

54 ©

OpenRules, Inc. OpenRules® User Manual

Row 2 with Condition/Action indicators
Row 3 with Condition/Action implementation

Row 4 with the type and name of the parameters entered in the proper column.

Here is a complete implementation of this rule table:

(e £ i

C1 2 Al
customer.gender.equals |customer.maritalStatus_equal |response.map. put('salutation”,
(gender) s(status) salutation);

String gender String status String salutation

Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.

The rules implementer will decide that to support this rule table, type Customer
should have at least two attributes, "gender" and "maritalStatus"”, and the type
Response should be able somehow to save different pairs (names,value)
like("salutation”,"Mr."). Knowing the development environment, s/he will decide
on the types of attributes. Let's assume that both types Customer and Response
correspond to Java classes, and the attributes have the basic Java type of String.
In this case, the column "Gender" will be marked with a parameter "String

gender" and the condition will be implemented as a simple boolean expression:

customer.gender.equals (gender)

The second column "C2" is implemented similarly with a String attribute and a
parameter maritalStatus. Finally (to make it a little bit more complicated), we
will assume that the class Response contains an attribute map of the predefined
Java type HashMap, in which we can put/get pairs of Strings. So, the

implementation of the action "Set Salutation" will look like:

response.map.put ("salutation", salutation)

55©

OpenRules, Inc. OpenRules® User Manual

How Rule Tables Are Executed

The rules inside rule tables are executed one-by-one in the order they are placed
in the table. The execution logic of one rule (row in the vertical table) is the

following:

IF ALL conditions are satisfied THEN execute ALL actions.

If at least one condition is violated (evaluation of the code produces false), all
other conditions in the same rule (row) are ignored and are not evaluated. The
absence of a parameter in a condition cell means the condition is always
true. Actions are evaluated only if all conditions in the same row are evaluated
to be true and the action has non-empty parameters. Action columns with no

parameters are ignored.

For the default vertical rule tables, all rules are executed in top-down order.
There could be situations when all conditions in two or more rules (rows) are
satisfied. In that case, the actions of all rules (rows) will be executed, and the

actions in the rows below can override the actions of the rows above.
For horizontal rule tables, all rules (columns) are executed in left-to-right order.

Relationships between Rules inside Rule Tables

OpenRules® does not assume any implicit ("magic") execution logic, and executes
rules in the order specified by the rule designer. All rules are executed one-by-
one in the order they are placed in the rule table. There is a simple rule that

governs rules execution inside a rules table:

The preceding rules are evaluated and executed first!

OpenRules® supports the following types of rule tables that offer different

execution logic to satisfy different practical needs:

Multi-hit rule tables
Single-hit rule tables
Rule Sequences.

56 ©

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRules® User Manual

Multi-Hit Rule Tables

A multi-hit rule table evaluates conditions in ALL rows before any action is
executed. Thus, actions are executed only AFTER all conditions for all rules
have already been evaluated. From this point of view, the execution logic is
different from traditional programming if-then logic. Let us consider a simple

example. We want to write a program "swap" that will do the following:

If x is equal to 1 then make x to be equal to 2.
If x is equal to 2 then make x to be equal to 1.

Suppose you decided to write a Java method assuming that there is a class App

with an integer variable x. The code may (but should not) look like this:

void swapX (App app) {
if (app.x == 1) app.x = 2;
if (app.x == 2) app.x = 1;

Obviously, this method will produce an incorrect result because of the missing
"else". This is “obvious” to a software developer, but may not be at all obvious to
a business analyst. However, in a properly formatted rule table the following

representation would be a completely legitimate:

Then make x to be
If x equals to
equal to
2
2 1

It will also match our plain English description above. Here is the same table

with an extended technical view:

570

OpenRules, Inc. OpenRules® User Manual

Rules void swapX(App app)
C A
app.x == oldValue app.x = new\alue
int aldValue int new\alue
Then make x to be
If x equals to
equal to
1 2
2 1

Rules Overrides in Multi-Hit Rule Tables

There could be situations when all conditions in two or more rules (rows) are
satisfied at the same time (multiple hits). In that case, the actions of all rules
(rows) will be executed, but the actions in the rows below can override the
actions of the rows above. This approach also allows a designer to specify a very

natural requirement:

More specific rules should override more generic rules!

The only thing a designer needs to guarantee is that "more specific" rules are
placed in the same rule table after "more generic" rules. For example, you may
want to execute Action-1 every time that Condition-1 and Condition-2 are
satisfied. However, if additionally, Condition-3 is also satisfied, you want to
execute Action-2. To do this, you could arrange your rule table in the following

way:

Condition-1 | Condition-2 | Condition-3| Action-1 Action-2
X X X
X X X X

In this table the second rule may override the first one (as you might naturally

expect).

58 ©

OpenRules, Inc. OpenRules® User Manual
Let's consider the execution logic of the following multi-hit rule table that defines
a salutation "Mzr.", "Mrs.", or "Ms." based on a customer's gender and marital

status:

Rules void defineSalutation(Customer customer, Response response)

Gender Marital Status Set Salutation
Male Mr.

Female Married Mrs.

Female Single Ms.

If a customer is a married female, the conditions of the second rules are satisfied
and the salutation "Mrs." will be selected. This is only a business view of the
rules table. The complete view including the hidden implementation details

("Java snippets") is presented below:

Rules void defineSalutation(Customer customer, Response response)
C1 Cc2 Al

customer.gender.| customer.maritalStatus. | response.map.put('salutation”,s
equals(gender) equals(status) alutation);

String gender String status String salutation

Gender Marital Status Set Salutation
Male Mr.

Female Married Mrs.

Female Single Ms.

The OpenRulesEngine will execute rules (all 3 "white" rows) one after another.
For each row if conditions C1 and C2 are satisfied then the action A1l will be
executed with the selected "salutation". We may add one more rule at the very

end of this table:

Rules void defineSalutation(Customer customer, Response

response)

Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.
?2??

59 ©

OpenRules, Inc. OpenRules® User Manual

In this case, after executing the second rule OpenRules® will also execute the
new, 4th rule and will override a salutation "Mrs." with "???". Obviously this is
not a desirable result. However, sometimes it may have a positive effect by
avoiding undefined values in cases when the previous rules did not cover all
possible situations. What if our customer is a Divorced Female?! How can this
multi-hit effect be avoided? What if we want to produce "???" only when no other

rules have been satisfied?

Single-Hit Rule Tables

To achieve this you may use a so-called "single-hit" rule table, which is specified
by putting any return type except "void" after the keyword "Rules". The

following is an example of a single-hit rule table that will do exactly what we

Rules String defineSalutation(Customer customer, Response
response)

need:

Gender Marital Status Set Salutation
Male Mr.
Female Married Mrs.
Female Single Ms.
?2??

Another positive effect of such "single-hitness" may be observed in connection
with large tables with say 1000 rows. If OpenRules® obtains a hit on rule #10 it
would not bother to check the validity of the remaining 990 rules.

Having rule tables with a return value may also simplify your interface. For
example, we do not really need the special object Response which we used to
write our defined salutation. Our simplified rule table produces a salutation

without an additional special object:

60 ©

OpenRules, Inc. OpenRules® User Manual

Rules String defineSalutation(Customer customer)

Cl Cc2 Al
customer.gender. customer.maritalStatus .
return salutation;

equals(gender) .equals(status)

String gender String status String salutation
Gender Marital Status Set Salutation

Male Mr.

Female Married Mrs.

Female Single Ms.

??7?

Please note that the last action in this table should return a value that has the
same type as the entire single-hit table. The single-hit table may return any
standard or custom Java class such as String or Customer. Instead of basic Java
types such as "int" you should use the proper Java classes such as Integer in the

table signature.

Here is an example of Java code that creates an OpenRulesEngine and executes

the latest rules table "defineSalutation":

public static void main(String[] args) {
String fileName = "file:rules/main/HelloCustomer.xls";
OpenRulesEngine engine =
new OpenRulesEngine (fileName) ;
Customer customer = new Customer () ;
customer.setName ("Robinson") ;
customer.setGender ("Female") ;
customer.setMaritalStatus ("Married") ;
String salutation =
(String) engine.run("defineSalutation", customer) ;
System.out.println (salutation);

Rule Sequences

There is one more type of rule tables called “Rule Sequence” that is used mainly
internally within templates. Rule Sequence can be considered as a multi-hit rule
table with only one difference in the execution logic, conditions are not evaluated
before execution of the actions. So, all rules will be executed in top-down order
with possible rules overrides. Rule actions are permitted to affect the conditions

of any rules that follow the action. The keyword “Rules” should be replaced with

61©

OpenRules, Inc. OpenRules® User Manual

another keyword “RuleSequence”. Let’s get back to our “swapX” example. The

following multi-hit table will correctly solve this problem:

Rules void swapX{App app)

C A
app.x = newValue;
app.x == oldValue app.x:
int oldValue int new\alue

Then make x to be
If x equals to

equal to
1 2
2 1

However, a similar rule sequence

RuleSequence void swapX(App app)

C A
L app.x = new\alue;
app.x == oldValue app.x
int oldValue int newValue

Then make x to be
equal to

2
2 1

If x equals to

will fail because when x is equal to 1, the first rule will make it 2, and

then the second rules will make it 1 again.

Relationships among Rule Tables

In most practical cases, business rules are not located in one file or in a single
rule set, but rather are represented as a hierarchy of inter-related rule tables

located in different files and directories - see Business Rules Repository.

Frequently, the main Excel-file contains a main method that specifies the
execution logic of multiple decision tables. You may use the table “Decision” for
the same purposes. In many cases, the rule engine can execute decision tables

directly from a Java program — see API.

62 ©

OpenRules, Inc. OpenRules® User Manual

Because OpenRules® interprets rule tables as regular methods, designers of rules
frequently create special "processing flow" decision tables to specify the
conditions under which different rules should be executed. See examples of

processing flow rules in such sample projects as Loan2 and LoanDynamics.

Simple AND / OR Conditions in Rule Tables

All conditions inside the same row (rule) are considered from left to right using

the AND logic. For example, to express

if (A>5 && B >10) {do something}

you may use the rule table:

Rules void testAND(int a, int b)

C1l C2 Al
a>5 b>10 System.out.printin(text)
String x String x String text
A>5 B >10
X X Something
To express the OR logic
if (A>5 || B >10) {do something}

you may use the rules table:

Rules void testOR(int a, int b)

Cl C2 Al
a>5 b>10 System.out.printin(text)
String x String x String text
A>5 B > 10
X X Something

Sometimes instead of creating a decision table it is more convenient to represent
rules using simple Java expressions inside Method tables. For example, the

above rules table may be easily represented as the following Method table:

63 ©

OpenRules, Inc. OpenRules® User Manual

Method void testOR(int &, int b)

if (@>5 || b>10) System.out.printin("Something");

Horizontal and Vertical Rule Tables

Rule tables can be created in one of two possible formats:

Vertical Format (default)

Horizontal Format.

Based on the nature of the rule table, a rules creator can decide to use a vertical
format (as in the examples above where concrete rules go vertically one after
another) or a horizontal format where Condition and Action are located in the
rows and the rules themselves go into columns. Here is an example of the proper

horizontal format for the same rule table "helloWorld":

Rules void helloWorld{int hour) /horizontal
Hour From 0 12 18 23
Hour To 11 17 22 24

Greeting Good Morming | Good Afternoon | Good Evening | Good Might

OpenRules® automatically recognizes that a table has a vertical or a horizontal
format. You can use Excel's Copy and Paste Special feature to transpose a rule

table from one format to another.

Note. When a rule table has too many rules (more than you can see on one page)
it 1s better to use the vertical format to avoid Excel's limitations: a worksheet has

a maximum of 65,536 rows but it is limited to 256 columns.

Merging Cells

OpenRules® recognizes the powerful Cell Merging mechanism supported by
Excel and other standard table editing tools. Here is an example of a rule table

with merged cells:

64 ©

OpenRules, Inc.

OpenRules® User Manual

Rules void testMerge(String valuel, String value?)

Rule C1l C2 Al A2
S , out("A2: " +
valuel.equals(val) value2.equals(val) out("Al: " + text); text):
String val String val String text String text
Name Value Text 1 Text 2
1 One 12
11+21
2 B Two 22
3 31 32
Three
4 D 41 42

The semantics of this table is intuitive and described in the following table:

Value| Value| Applied Printed
1 2 Rules Results
Al: 11+21
B One 1 A2 12
Al: 11421
B Two 2 A2 99
Al: 31
B | Three 3 A2 3D
Al: 41
D | Three 4 A2 42
A Two none
D Two none

Restriction. We added the first column with rules numbers to avoid the known

implementation restriction that the very first column (the first row for horizontal

rule tables) cannot contain merged rows. More examples can be found in the

standard rule project "Merge" -

click here to analyze more rules. When you use

the standard decision tables, you may put the standard condition “C#” in the

very first column and use numbers to mark each table’s row.

Sub-Columns and Sub-Rows for Dynamic Arrays

One table column can consist of several sub-columns (see sub-columns "Min" and

"Max" in the example above).

You may efficiently use the Excel merge

65 ©

http://openrules.com/docs/xls/MergeRules.xls
http://openrules.com/docs/man_rules.html#minmaxColumns

OpenRules, Inc. OpenRules® User Manual

mechanism to combine code cells and to present them in the most intuitive way.

Here is an example with an unlimited number of sub-columns:

C6

contains(rates,customer.rate)

String[] rates

As you can see, condition C6 contains 4 sub-columns for different combinations of
rates. The cells in the Condition, code, parameters and display values, rows are
merged. You can insert more sub-columns (use Excel's menu "Insert") to handle
more rate combinations if necessary without any changes in the code. The
parameter row is defined as a String array, String[] rates. The actual values
of the parameters should go from left to right and the first empty value in a sub-
column should indicate the end of the array "rates". You can see the complete

example in the rule table "Rule Family 212" in the file Loan1.xls.

If your rule table has a horizontal format, you may use multiple sub-rows in a

similar way (see the example in file UpSell.xls).

Using Expressions inside Rule Tables

OpenRules® allows a rules designer to use “almost” natural language expressions
inside rule tables to represent intervals of numbers, strings, dates, etc. You also

may use Java expressions whenever necessary.

Integer and Real Intervals

You may use plain English expressions to define different intervals for integer
and real decision variables inside rule tables. Instead of creating multiple

columns for defining different ranges for integer and real values, a business user

66 ©

http://openrules.com/docs/xls/Loan1.xls
http://openrules.com/docs/xls/UpSell.xls

OpenRules, Inc. OpenRules® User Manual

may define from-to intervals in practically unlimited English using such phrases
as: "500-1000", "between 500 and 1000", "Less than 16", "More or equals to 17",
"17 and older", "< 50", ">= 10,000", "70+", "from 9 to 17", "[12;14)", etc.

You also may use many other ways to represent an interval of integers by
specifying their two bounds or sometimes only one bound. Here are some

examples of valid integer intervals:

Cell Expression Comment

5 equals to 5

[5,10] contains 5,6, 7, 8, 9, and 10

5;10 contains 5,6, 7, 8, 9, and 10

[5,10) contains 5 but not 10

5-10 contains 5 and 10

5-10 contains 5 and 10

5- 10 contains 5 and 10

-5-20 contains -5 and 20

5..90 error: left bound is greater than the right
one

-5--2 contains -5, -4, -3, -2

from 5 to 20 contains 5 and 20

less 5 does not contain 5

less than 5 does not contain 5

less or equals 5 contains 5

less or equal 5 contains 5

less or equals to 5 contains 5

smaller than 5

does not contain 5

more 10 does not contain 10
more than 10 does not contain 10
10+ more than 10

>10 does not contain 10
>=10 contains 10
between 5 and 10 contains 5 and 10
no less than 10 contains 10

no more than 5 contains 5

67 ©

OpenRules, Inc. OpenRules® User Manual

equals to 5 equals to 5

greater or equal than 5

and less than 10 contains 5 but not 10

more than 5 less or
equal than 10

more than 5,111,111
and less or equal than

does not contain 5 and contains 10

does not contain 5,111,111 and contains

10,222,222 10,222,222

[5'000;10'000'000) contains 5,000 but not 10,000,000
[5,000;10,000,000) contains 5,000 but not 10,000,000
(5;100,000,000] contains 5,000 and 10,000,000

You may use many other ways to represent integer intervals as you usually do in
plain English. The only limitation is the following: min should always go

before max!

Similarly to integer intervals, one may use the predefined
type FromToDouble to represent intervals of real numbers. The bounds of

double intervals could be integer or real numbers such as [2.7; 3.14).

Comparing Integer and Real Numbers

You may use the predefined type CompareToInt to compare a decision variable

with an integer number that is preceded by a comparison operator. Examples of

acceptable operators:

Cell Expression Comment

<=5 less or equals to 5
<5 strictly less than 5
>5 strictly more than 5
>=5 more or equals to 5

1= not equal to 5

equals to 5.
5 Note that absence of a comparison operator means
equality. You cannot use an explicit operator "=" (not to

be confused with Excel's formulas).

68 ©

OpenRules, Inc. OpenRules® User Manual

Similarly to CompareToInt one may use the predefined type CompareToDouble

to represent comparisons with real numbers. The comparison values may be

presented as integer or real numbers, e.g. "<=25.4" and "> 0.5".

Using Comparison Operators inside Rule Tables

user can employ a comparison operators such as or "less" or or "more
A pl y p p t h "<" f Hl n |V>|V f n "
directly inside the rules. There are several ways to accomplish this. Here is an

example from the rule table "Rule Family 212" (Loan1.xls):

C4
op.compare(c.creditCardBalance,
value)
Operator op int value

W
nwu

You may use the Excel Data Validation menu to limit the choice of the operators:

69 ©

http://openrules.com/docs/xls/Loan1.xls

OpenRules, Inc. OpenRules® User Manual

Data Validation 1 ?|X

Settings | Input Message I Error Alert |
Validation criteria
Allow:
lest ;_I IV Ignore blank
Datas IV In-cell dropdown

'bemveen ;I

Source:

I>,'(,<=,>=,'==,!= ﬂ

™ Apply these changes to all other cells with the same settings

Gear Al | [ox | concel |

Here the sign "==" has an apostrophe in front to differentiate it from an Excel
formula. The actual implementation of possible comparison operators 1is
provided as an example in the project "com.openrules.tools"
(see com.openrules.tools.Operator.java). You may change them or add
other operators. In addition to values of the type "int" you may also use Operator

to compare long, double, and String types.

Comparing Dates

You may use the standard java.util.Date or any other Java Comparable type.

Here is an example of comparing Dates:

C1l
op.compare(visit.date,date)
Operator op Date date
Operator Date

== 2/15/2007
1= 1/1/2007
<= 2/15/2007
> 2/15/2007
< 2/15/2007

700

OpenRules, Inc. OpenRules® User Manual

Please note that the current implementation compares dates without time.

Another way to use operators directly inside a table is to use expressions. In the
example above, instead of having two sub-columns "Operator" and "Value" we

could use one column and put an expression inside the cell:

{ c.creditCardBalance <= 0; }

The use of expressions is very convenient when you do not know ahead of time

which operator will be required for which columns.

Comparing Boolean Values

If a parameter type is defined as "boolean", you are allowed to use the following

values inside rule cells:

True, TRUE, Yes, YES
False, FALSE, No, NO

You also may use formulas that produces a Boolean, .e.g.
{ loan.additionalIncomeValidationNeeded; }

Sometimes, you want to indicate that a condition is satisfied or an action should
be executed. You may use any character like X or * without checking its actual
value — the fact that the cell is not empty indicates that the condition is true. For

example, in the following table (from the standard project VacationDays)

710

http://openrules.com/docs/man_rules.html#Using Expressions Inside Decision Tables

OpenRules, Inc. OpenRules® User Manual

Rules void DecisionTable(Test t)

C1|t.age >= max int max |Age >= 18 | 18 | 18 | 45 | 45 | 45 | 60
C2|t.age < min int min |Age < 18 | 45 | 45 | 45 [60 | 60 | 60
C3|t.service >= max | int max |Service >= 25 | 40 25 | 40

C4 |t .service < min int min | Service < 25 | 40 25 | 40

Al|t.days = 22 String X |Assign 22 days X X X X X X X X
A2|t.days +=5 String X |5 extra days X

A3|t.days +=2 String X |2 extra days X X X X X X
Ad |t days +=3 String X |3 extra days X X

only actions marked with "X" will be executed. You can use any other character

instead of "X".

Representing String Domains

Let's express a condition that validates if a customer's internal credit score is one
of several acceptable rates such as "A B C" and "D F". To avoid the necessity to
create multiple sub-columns for similar conditions, we may put all possible string
values inside the same cell and separate them by spaces or commas. Here is an

example of such a condition:

Condition

domain.contains(customer.internalCreditRating)

DomainString domain

Internal Credit Rating

ABC
DF
DF
ABC

Here we use the predefined type DomainString that defines a domain of strings
(words) separated by whitespaces. The method "contains (String string)" of
the class DomainString checks if the parameter "string" is found among all

strings listed in the current "domain". You also may use the method

720

OpenRules, Inc. OpenRules® User Manual

"containsIgnoreCase (String string)" that allows you to ignore case

during the comparison.

If possible values may contain several words, one may use the predefined
type DomainStringC where "C" indicates that commas will be used as a string

separator. For example, we may use DomainStringC to specify a domain such

as "Very Hot, Hot, Warm, Cold, Very Cold".
Representing Domains of Numbers
If you need to represent domains of integer or double values, there are several

predefined types similar to DomainString:

e DomainInt
e DomainIntC
e DomainDouble

e DomainDoubleC

For example, here is a condition column with eligible loan terms:

Condition

domain.contains(c.loanTerm)
DomainIntC domain

Eligible Loan Terms

24,36,72
36,72
72

Using Java Expressions

The use of Java expressions provides the powerful ability to perform calculations
and test for complex logical conditions. While the writing of expressions requires
some technical knowledge, it does not require the skills of a programmer. Real-
world experience shows that business analysts frequently have a need to write

these expressions themselves. It is up to the rule table designer to decide

730

OpenRules, Inc.

OpenRules® User Manual

whether to show the expressions to business people or to hide them from view.

Let's consider a decision table for "Income Validation" from the provided

standard example “Loan1”:

Rules void ValidateIncomeRules(LoanRequest loan, Customer customer)

C1 Al
customer.monthlylncome * 0.8 - loan.incomeValidationResult
customer.monthlyDebt > loan.amount/loan.term = result;

boolean condition

String result

IE THEN
Income is Sufficient for the Loan Set Income Vaidation
Result
No UNSUFFICIENT
Yes SUFFICIENT

Here the actual income validation expression is hidden from business people inside "gray"

technical rows, and a business person would only be able to choose between "Yes" or "No".

However, the same table could be presented in this way:

Rules void ValidatelncomeRules(LoanRequest loan, Customer customer)

C1 Al
e loan.incomeValidationResult
condition == true _ .
= result;

boolean condition

String result

IF
Condition is True

THEN
Set Income Validation
Result

UNSUFFICIENT

:= customer.monthlylncome * 0.8 -
customer.monthlyDebt > loan.amount/loan.term

SUFFICIENT

Now, a user can both see and change the actual income validation condition.

74©

OpenRules, Inc. OpenRules® User Manual

Notes: Do not use Excel's formulas if you want the content to be recognized by

the OpenRules® engine: use OpenRules® expressions instead.

If you want to start your cell with "=" you have to put an apostrophe in front of it

1.e. '= to direct Excel not to attempt to interpret it as a formula.

Expanding and Customizing Predefined Types

All the predefined types mentioned above are implemented in the Java
package com.openrules.types. You may get the source code of this package
and expand and/or customize the proper classes. In particular, for
internationalization purposes you may translate the English key words into your
preferred language. You may change the default assumptions about
inclusion/exclusion of bounds inside integer and real intervals. You may add

new types of intervals and domains.

Performance Considerations

The use of expressions inside OpenRules® tables comes with some price - mainly
in performance, for large rule tables. This is understandable because for every
cell with an expression OpenRules® will create a separate instance of the proper
Java class during rules execution. However, having multiple representation
options allows arule designer to find a reasonable compromise between

performance and expressiveness.

RULE TEMPLATES

OpenRules® provides a powerful yet intuitive mechanism for compactly
organizing enterprise-level business rules repositories. Rule templates allow
rule designers to write the rules logic once and use it many times. With rule
templates you may completely hide rules implementation details from business
users. OpenRules® supports several rule templatization mechanisms from simple
rule tables that inherit the exact structure of templates to partial template

implementations.

750

OpenRules, Inc. OpenRules® User Manual

Simple Rules Templates

Rule templates are regular rule tables that serve as structural prototypes for
many other rule tables with the same structure but different content (rules). A
simple rule template usually does not have rules at all but only specifies the
table structure and implementation details for conditions and actions. Thus, a
simple rule template contains the first 5 rows of a regular decision table as in the

following example:

Signature with
Rules void defineGreeting (App app, int hour) parameters

c1 Al _Cond_lt_lons and Actions

identifiers

min <= hour && hour <= app.greeting = Java sn'ppets.descnbe

o condition/action
max greeting; :
semantics
int min int max String greeting Parameter types and

names

Hour From Hour To Set Greeting Bu3|r_1e_ss Names fo.r
conditions and actions

We may use this rule table as a template to define different greeting rules for
summer and winter time. The actual decision tables

will implement (or extend) the template table with particular rules:

Rules summerGreeting template defineGreeting

:;Ir%:; Hour To Set Greeting
0 10 Good Morning
11 18 Good Afternoon
19 22 Good Evening
23 24 Good Night

and

Rules winterGreeting template defineGreeting

nBllg Hour To Set Greeting
From
0 11 Good Morning
12 17 Good Afternoon

76 ©

OpenRules, Inc. OpenRules® User Manual

18 22 Good Evening
23 24 Good Night

Note that rule tables "summerGreeting" and "winterGreeting" do not have
technical information at all - Java snippets and a signature are defined only once

and reside in the template-table "defineGreeting".
Along with the keyword "template" you may use other keywords:

e implements
¢ implement
e extends

e extend

We will refer to these rule tables created based on a template as "template

implementations".

Simple templates require that the extended tables should have exactly the same

condition and action columns.

Defining Rules based on Templates

When many rule tables are created based on the same rule template, it could be
inconvenient to keep the same default rules in all extended tables. As an
alternative you may add the rules tables based on the same template. The

location of the default rules depends on the types of your rules tables.

Templates for Single-Hit Rule Tables

Single-hit rule tables usually end their execution when at least one rules is
satisfied. However, when conditions in all specified rules are not satisfied then a
single-hit table usually uses the last rule(s) to specify the default action(s). The
rules from the template will be executed after the actual rules defined inside

the template implementation.

770

OpenRules, Inc. OpenRules® User Manual
Let's consider an example. We have shown that without modification, the rule
tables above would not produce any greeting if the parameter "hour" is outside of

the interval [0;24]. Instead of adding the same error message in both "summer"

and "winter" rules, we could do the following:

make our "defineGreeting" template a single-hit table by changing a return

type from "void" to "String"

- add the default reaction to the error in "hour" directly to the template:

Rules

defineGreeting(App app, int hour)

C1

Al

min <= hour &&

app.greeting =

ERROR: Invalid Hour

Signature now returns
String

Conditions and Actions
identifiers

"return greeting;" has been

hour <= max greeting; return greeting; added
int min int max String greeting Parameter types and names
Hour . -
Hour To Set Greeting Business names for
From conditions and actions

This rule will be added at
the end of all template
implementations tables. The
error message will be return
instead of a greeting when
all other rules fail.

A template for single-hit tables could include more than one rule with different
conditions - they all will be added at the end of the template

implementation tables to execute different default actions.

Templates for Multi-Hit Rule Tables

Multi-hit rule tables execute all their rules that are satisfied, allowing rules

overrides. However, when conditions in all specified rules are not satisfied then a
multi-hit table usually uses the first (!) rules to specify the default action. The
rules from the template will be executed before the actual rules defined inside

the extended tables.

Let's consider an example. You may notice that the rules tables above would not

produce any greeting if the parameter "hour" is outside of the interval [0;24].

780

http://openrules.com/docs/man_rules.html#Multi-Hit and Single-Hit Decision Tables
http://openrules.com/docs/man_rules.html#Multi-Hit and Single-Hit Decision Tables

OpenRules, Inc. OpenRules® User Manual

Let's assume that in this case we want to always produce the default greeting

"How are you". To do this, simply add one default rule directly to the template:

Rules void defineGreeting (App app, int hour)

C1 Al
min <= hour && a reeting = greeting;
hour <= max PP-g 9=9 g
int min int max String greeting

This rule will be added at
the beginning of all
template implementations.
This greeting will be
produced if all other rules
in the rule tables fail

How are you

A template for multi-hit tables could include more than one default rule each
with different conditions - they all will be added to the beginning of the template

implementation tables and will execute different default actions.

Partial Template Implementation

Usually template implementation tables have exactly the same structure as the
rule templates they extend. However, sometimes it is more convenient to build
your own rule table that contains only some conditions and actions from already
predefined rule templates. This is especially important when a library of rule
templates for a certain type of business is used to create a concrete rules-based

application. How can this be achieved?

The template implementation table uses its second row to specify the names of
the used conditions and actions from the template. Let's consider an example.
The DebtResearchRules from the standard OpenRules® example "Loan

Origination" may be used as the following template:

790

OpenRules, Inc. OpenRules® User Manual

Rules void DebtResearchRules(LoanRequest loan, Customer c)

C1 Cc2 C3 c4 C5 C6 C7 Al
c.mortaa c.outsideCredit cloanHol | op.compare(c. | op.compare(c.e contains(r [c.internalA|loan.debt
; 939 | 5coresmin &&| & p.comp -|Op-comp _~ |ates,c.inte|nalystOpin|Research
eHolder.eq . | der.equal | creditCardBala|ducationLoanBa | -
c.outsideCredit rnalCredit [ion.equals |Result =
uals(YN) _ s(YN) nce,value) lance,value) : .
Score<=max Rating) [(level) level;
String YN | int min int String YN Opera int |Operat int value String([] String String
max tor op| value | orop rates level level
AND
AND AND . THEN
IF Outside AND | Credit Card Education| AND 1 AND | pop
. Loan Internal | Internal
Mortgage | Credit Score Loan Balance . Research
Balance Credit | Analyst
Holder Holder Rating | Opinion Recomme
Min Max Oper | Value | Oper | Value ndations

We may create a rule table that implements this template using only conditions

C1, C2, C5, C6 and the action Al:

Rule DebtResea Rules template DebtResea Rule

C1 Cc2 C5 C6 Al

AND AND THEN

IF Outside Credit| Education Loan Debt

Mortgage Score Balance AND.] Research
Internal Credit Rating
gloes Min Max Oper Value Recommen

dations

Ve | High
No 100 550 High

No 550 900 Mid

No 550 900 > 0 High

No 550 900 <= 0 A B C High

No 550 900 <= 0 D F Mid

No 550 900 Low

No 550 900 <= 0 Low

No 550 900 > 0 D F High

No 550 900 > 0 A B C Low

The additional second row specifies which conditions and actions from the
original template are selected by this rule table. The order of conditions and
actions may be different from the one defined in the template. Only names like
"C2", "C6", and "A1" should be the same in the template and in its
implementation. It is preferable to use unique names for conditions and actions

inside templates. If there are duplicate names inside templates the first one

80©

OpenRules, Inc. OpenRules® User Manual

(from left to right) will be selected. You may create several columns using the

same condition and/or action names.

Templates with Optional Conditions and Actions

There is another way to use optional conditions and actions from the templates.
If the majority of the template implementations do not use a certain condition
from the template, then this condition may be explicitly marked as optional by
putting the condition name in brackets, e.g. "[C3]" or "[Conditon-5]". In this
case it is not necessary to use the second row to specify the selected conditions in
the majority of the extended tables. For example, let's modify the
DebtResearchRules template making the conditions C3, C4, and C7 optional:

Rules void DebtResearchRules(LoanRequest loan, Customer c)

c1 c2 | [c3] | [ca| c5 | c6 | [cn1| A1

Now we can implement this template as the following rule table without the

necessity to name all of the conditions and actions in the second row:

Rules MyDebtResearchRules template DebtResearchRules
AND

; AND
Mo:r a Ogrtgé?te Education Loan AND
o Balance Internal Credit Rating

e Holder| Score
Min| Max | Oper | Value

High
Mid
High
High
Mid
Low
Low
High

Low

810

OpenRules, Inc. OpenRules® User Manual

However, a template implementation that does want to use optional conditions

will have to specify them explicitly using the second row:

Rule DebtResearchRules template DebtResearchRule
C1l C2 C3 C4 C5 C6 Al
AND AND AND
IF Outside AND | cCredit Card | Education AND
Mortgagd | Credit Score| Loan Balance [Loan Balance| Internal Credit
e Holder - Holder Rating
Min | Max Oper | Value | Oper |Value
| Yes | High
No | 100 550 High
No 550 | 900 Yes <= 0 Mid
High
High
Mid
No 550 | 900 No > 0 Low

Similarly, optional actions may be marked as [A1]" or "[Action3]".

Implementation Notes:

o Rule templates are supported for both vertical and horizontal rule tables.

o The keywords "extends" or "implements" may be used instead of the

keyword "template"

o Template implementations cannot be used as templates themselves.

Templates for the Default Decision Tables

The rule tables of the type “DecisionTable” are implemented using several

templates located in the following files inside the configuration project

“openrules.config”:

DecisionTemlates.xls: contains the following rule templates and
methods for the decision tables:

o DecisionTemplate (Decision decision): a template for the
tables of type “Decision”

o initializeDecision ():the method that initializes the current decision

o decision ():the method that returns the current decision

820

http://openrules.com/docs/man_rules.html#Horizontal and Vertical Rule Tables

OpenRules, Inc. OpenRules® User Manual

o getGlossary ():the method that returns the glossary

o0 getDecisionObject (String nameofBusinessConcept): the
method that returns a business object associated with the
BusinessConcept

o 1sTraceOn (): returns true if the tracing of the decision is on

o DecisionObjectTemplate (Decision decision): atemplate for
the table of the type “DecisionObject”

0 GlossaryTemplate (Decision decision): atemplate for the table
of type “Glossary”

o Methods that return values of decision variables based on their names:

= int getInt(String name)
= double getReal (String name)
"= String getString(String name)
= Date getDate (String name)
= boolean getBool (String name)
o Methods that set values of decision variables based on their names:
" void getInt (String name, int value)
= void getReal (String name, double value)
" void getString(String name, String value)
= void getDate (String name, Date wvalue)
= void getBool (String name, Boolean value)

o Comparison methods that compare a decision variable with a given “name”,
against a given “value”, or another decision variable using a given operator,
“op”:

" Dboolean comparelInt (String name, String op, int
value)

= boolean comparelInt (String namel, String op,
String name?2)

= boolean compareReal (String name, String op,
double wvalue)

= boolean compareReal (String namel, String op,

String name?2)

830

OpenRules, Inc. OpenRules® User Manual

= boolean compareBool (String name, String op,
boolean value)

= boolean compareBool (String namel, String op,
String name?2)

"= boolean compareDate(String name, String op,
Date date)

" boolean compareDate (String namel, String op,
String name?2)

= boolean compareString(String name, String op,
String value)

= boolean compareDomain (String name, String op,
String domain)

o the Environment table that includes the following references:

* DecisionTable${OPENRULES MODE}Templates.xls:
where ${OPENRULES MODE} is an environment variable that has
one of the following values:

e Execute — the default value for Decision Table execution
templates

e Validate —for Decision Table validation templates

e Solve — for execution of decision models using Rule
Solver.

" DecisionTableExecuteTemplates.xls: templates for
execution

" DecisionTableValidateTemplates.xls: templates for
validation

- DecisionTableExecuteTemplates.xls: contains the following rule templates:
o DecisionTableTemplate (): atemplate for execution of the single-hit
tables of the type “DecisionTable”
o DecisionTablelTemplate (): atemplate for execution of the multi-hit
tables of the type “DecisionTablel”
o DecisionTable2Template (): a template for execution of the rule

sequence tables of the type “DecisionTable2”

84©

OpenRules, Inc. OpenRules® User Manual

o customInitializeDecision (): the method that can be used for
initialization of custom objects
- DecisionTableValidateTemplates.xls: contains the following rule templates:
o DecisionTableTemplate (): a template for validation of the tables of
type “DecisionTable” against the domains defined in the glossary
o customInitializeDecision (): the method that can be used for the

initialization of custom objects.

Decision Templates

The template “DecisionTemplate” contains two mandatory action columns with
names “ActionPrint” and “ActionExecute” and three optional columns with the
names “Condition”, “ConditionAny”, and “ActionAny”. Here is an example of this

template:

RuleSequence void DecisionTemplate()

s - Dynamic Title for Action
Decision Variable Condition Decisions Execute Decision or Table Any Message

Because you can use the same column “Condition” or “ConditionAny” many times
in your own decision and sub-decision tables, you may create tables of type

“Decision” that are based on this template with virtually unlimited complexity.

Three Major Decision Table Templates

The template “DecisionTableTemplate” serves as a template for all standard

decision tables. All columns in this template are conditional meaning their

names are always required. Here is an example of the first two rows of this

template:

85 ©

OpenRules, Inc. OpenRules® User Manual

Rules String DecisionTableTemplate()
[Condition] | [ConditionAny] [If] [Conclusion] [Action] [ActionAny] | [Then] | [Message]

The actual DecisionTable template is being upgraded with new OpenRules
release and is much larger. Please look at the latest this and other decision table

templates in the file “openrules.config/ DecisionTableExecuteTemplates.xls”.

The template “DecisionTable1Template” serves as a template for all decision

tables of type “DecisionTablel”. Here is an example the first two rows of this

template:

Rules void DecisionTablelTemplate()

[Condition] | [ConditionAny] [If] [Conclusion] | [Action] | [ActionAny] | [Then] | [Message]

The template “DecisionTable2Template” serves as a template for all decision

tables of type “DecisionTable2”. Here is an example the first two rows of this

template:

RuleSequence void DecisionTable2Template()

[Condition] | [ConditionAny] [If] [Conclusion] | [Action] | [ActionAny] | [Then] | [Message]

You can use all these columns as many times as you wish when you may create
concrete decision tables based on these templates. Please check the file
“DecisionTableExecuteTemplates.xls” in your standard configuration project

“openrules.config” to see the latest version of the decision table templates.
Customization

Customizing Default Decision Tables

A user may move the above files from “openrules.config” to different locations
and modify the decision table templates (and possible other templates). For
example, to have different types of messaging inside a custom decision, a user

may add two more columns to the template “DecisionTableTemplate”:

- Warning: similar to Message but can use a different log for warning only

- Errors: similar to Message but can use a different log for errors only.

86 ©

OpenRules, Inc. OpenRules® User Manual

Adding Custom Decision Tables

Users may add their own decision tables with conditions and actions specific to
their applications by defining their own keywords by simply extending the
keyword "DecisionTable" with they own identifier. For example, a user may add
a new decision table type called "DecisionTableMy" by defining the proper
custom conditions and actions inside a template with the name
"DecisionTableMyTemplate". The standard installation includes a project
"DecisionCustom" that demonstrates a custom decision table called
"DecisionTableCustom" created based on a project-specific template
"DecisionTableCustomTemplate". This template is placed in the project file

"DecisionTableCustomTemplates.xls".

Adding Custom Methods to Decision and Decision Runs

The file "DecisionTemplates.xls" contains the default methods:

customInitializeDecision

customInitializeDecisionRun

that may be replaced by your own methods. For example, rewriting the method
“customInitializeDecision® allows a user to initialize custom objects.
These and other methods are described below. For a good example of
customization look at the file "DecisionTableSolveTemplates.xls" that is used by
Rule Solver instead of the file "DecisionTableExecuteTemplates.xls". Contact

support@openrules.com if you need help with more complex customization of the

decision templates.

870

mailto:support@openrules.com

OpenRules, Inc. OpenRules® User Manual

OPENRULES® API

OpenRules® provides an Application Programming Interface (API) that defines a

set of commonly-used functions:

Creating a rule engine associated with a set of Excel-based rules
Creating a decision associated with a set of Excel-based rules
Executing different rule sets using application specific business objects

Creating a web session and controlling client-server interaction.

OpenRulesEngine API

OpenRulesEngine is a Java class provide by OpenRule® to execute different rule
sets and methods specified in Excel files using application-specific business
objects. OpenRulesEngine can be invoked from any Java application using a

simple Java API or a standard JSR-94 interface.

Engine Constructors

OpenRulesEngine provides an interface to execute rules and methods defined in
Excel tables. You can see examples of how OpenRulesEngine is used in basic rule
projects such as HelloJava, DecisionHellJava, HelloJsr94 and web applications
such as HelloJsp, HelloForms, and HelloWS. To use OpenRulesEngine inside
your dJava code you mneed to add an import statement for
com.openrules.ruleengine.OpenRulesEngine and make sure
that openrules.all.jar is in the classpath of your application. This jar and
all 3rd party jar-files needed for OpenRules® execution can be found in the
subdirectory openrules.config/lib of the standard OpenRules® installation.
You may create an instance of OpenRulesEngine inside of your Java program

using the following constructor:

public OpenRulesEngine (String xlsMainFileName)

88 ©

http://openrules.com/docs/man_api.html#OpenRules Implementation of JSR-94 API

OpenRules, Inc. OpenRules® User Manual

where xIsMainFileName parameter defines the location for the main xls-file. To
specify a file location, OpenRules® uses an URL pseudo-protocol
notation with prefixes such as "file:", ‘"classpath:", "http://",
"ftp://", "db:", etc. Typically, your main xls-file Main.xls is located in the
subdirectory "rules/main" of your Java project. In this case, its location may be
defined as "file:rules/main/Main.x1s". If your main xls-file is located
directly in the project classpath, you may define its location as

"classpath:Main.x1s". Use a URL like

http://www.example.com/rules/Main.x1ls

when Main.xls 1s located at a website. All other xls-files that can be invoked
from this main file are described in the table "Environment" using include-

statements.

You may also use other forms of the OpenRulesEngine constructor. For example,

the constructor

OpenRulesEngine (String xlsMainFileName, String methodName)

allows you to also define the main method from the file xlsMainFileName that

will be executed during the consecutive runs of this engine.

Here is a complete example of a Java module that creates and executes a rule

engine (see HelloJava project):

package hello;

import com.openrules.ruleengine.OpenRulesEngine;

public class RunHelloCustomer ({

public static void main(String[] args) {

String fileName = "file:rules/main/HelloCustomer.xls";
String methodName = "helloCustomer";
OpenRulesEngine engine = new OpenRulesEngine (fileName) ;
Customer customer = new Customer();
customer.setName ("Robinson") ;

customer.setGender ("Female") ;

89 ©

OpenRules, Inc. OpenRules® User Manual

customer.setMaritalStatus ("Married") ;

Response response = new Response();

Object[] objects = new Object[] { customer, response };

engine. run (methodName,objects) ;

System.out.println ("Response: " +
response.getMap () .get ("greeting") + ", " +
response.getMap () .get ("salutation") +

customer.getName () + "!");

As you can see, when an instance "engine" of OpenRulesEngine is created, you

can create an array of Java objects and pass it as a parameter of the method

Engine Runs

The same engine can run different rules and methods defined in its Excel-files.

You may also specify the running method using
setMethod (String methodName) ;

or use it directly in the engine run:
engine.run (methodName,businessObjects) ;

If you want to pass to OpenRulesEngine only one object such as "customer", you

may write something like this:

engine.run ("helloCustomer", customer) ;

If you do not want to pass any object to OpenRulesEngine but expect to receive

some results from the engine's run, you may use this version of the method

" n

run:

String[] reasons = (String[]) engine.run ("getReasons");

90 ©

OpenRules, Inc. OpenRules® User Manual

Undefined Methods

OpenRulesEngine checks to validate if all Excel-based tables and methods are
actually defined. It produces a syntax error if a method is missing. Sometimes,
you want to execute a rule method/table from an Excel file but only if this

method is actually present. To do this, you may use this version of the method

" n

run:

boolean mayNotDefined = true;

engine.run (methodName, businessObjects, mayNotDefined) ;

In this case, if the method "methodName" is not defined, the engine would not
throw a usual runtime exception "The method <name> is not defined" but rather
will produce a warning and will continue to work. The parameter
"mayNotDefined" may be used similarly with the method "run" with one

parameter or with no parameters, e.g.

engine.run ("validateCustomer", customer, true);

How to invoke rules from other rules if you do not know if these rules are
defined? It may be especially important when you use some predefined rule
names in templates. Instead of creating an empty rules table with the needed
name, you want to use the above parameter "mayNotDefined" directly in Excel.
Let's say you need to execute rules tables with names such as "NJ_Rules" or
"NY_Rules" from another Excel rules table but only if the proper state rules are

actually defined. You may do it by calling the following method from your rules:

Method void runStateRules(OpenRulesEngine engine, Customer customer, Response

response)

String methodName = customer.state + " Rules";
Obiject[] params = new Object[2];

params[0] = customer;

params[1] = response;

engine.run(methodName, params, true);

91©

OpenRules, Inc. OpenRules® User Manual

We assume here that all state-specific rules ("NJ_Rules", "NY_Rules", etc.) have
two parameters, "customer" and "response". To use this method you need to pass
the current instance of OpenRulesEngine from your Java code to your main
Excel file as a parameter "engine". If you write an OpenRules Forms application,
this instance of the OpenRulesEngine 1s always available
as dialog () .getEngine (), otherwise you have to provide access to it, e.g. by

attaching it to one of your own business objects such as Customer.

By default OpenRules will produce a warning when the required Excel rules

table or method is not available. You may suppress such warnings by calling:
engine.turnOffNotDefinedWarning () ;

Accessing Password Protected Excel Files

Some Excel workbooks might be encrypted (protected by a password) to prevent

other people from opening or modifying these workbooks. Usually it's done using

Excel Button (93 and then Prepare plus Encrypt Document. OpenRules
Engine may access password-protected workbooks by calling the following

method just before creating an engine instance:
OpenRulesEngine.setCurrentUserPassword ("password") ;

Instead of "password" you should use the actual password that protects your
main and/or other Excel files. Only one password may be used by all protected
Excel files that will be processed by one instance of the OpenRulesEngine
created after this call. This call does not affect access to unprotected files. The
standard project "HelloJavaProtected" provides an example of the protected

Excel file - use the word "password" to access the file "HelloCustomer.xls".

Note. The static method ‘"setCurrentUserPassword" of the class
OpenRulesEngine actually sets the BIFF8 encryption/decryption password for

the current thread. The use of a "null" string will clear the password.

920

OpenRules, Inc. OpenRules® User Manual

Engine Attachments

You may attach any Java object to the OpenRulesEngine using

methods setAttachment (Object attachment) and getAttachment ().

Engine Version

You may receive a string with the current version number of the

OpenRulesEngine using the method getVersion().

Dynamic Rules Updates

If a business rule is changed, OpenRulesEngine automatically reloads the rule
when necessary. Before any engine's run, OpenRulesEngine checks to determine
if the main Excel file associated with this instance of the engine has been
changed. Actually, OpenRulesEngine looks at the latest modification dates of
the file xlsMainFileName. If it has been modified, OpenRulesEngine re-
initializes itself and reloads all related Excel files. You can shut down this

feature by executing the following method:

engine.setCheckRuleUpdates (false) ;

Decision API

Decision Example

OpenRules® provides a special API for decision execution using the Java class
“Decision”. The following example from the standard project “Decision1040EZ”

demonstrates the use of this API.

public class Main {

public static void main (String[] args) {
String fileName = "file:rules/main/Decision.x1s";
OpenRulesEngine engine =
new OpenRulesEngine (fileName) ;
Decision decision =
new Decision ("Applyl040EZ",engine) ;
DynamicObject taxReturn =
(DynamicObject) engine.run ("getTaxReturn");

930

OpenRules, Inc. OpenRules® User Manual

engine.log ("=== INPUT:\n" + taxReturn);
decision.put ("taxReturn", taxReturn) ;
decision.execute () ;

engine.log ("=== OUTPUT:\n" + taxReturn);

Here we first created an instance engine of the class OpenRulesEngine and used
it to create an instance decision of the class Decision. We used the engine to get

an example of the object taxReturn that was described in Excel data tables:

DynamicObject taxReturn =
(DynamicObject) engine.run ("getTaxReturn");

Then we added this object to the decision:

decision.put ("taxReturn", taxReturn) ;

and simply executed decision:

decision.execute () ;

The Decision described in “Decision.xls” is supposed to modify certain attributes
inside the object decision and objects which were put inside the decision after its

execution.

Decision Constructors

The class Decision provides the following constructor:

public Decision(String decisionName, String xlsMainFileName)

where “decisionName” is the name of the main table of the type “Decision” and

“x1sMainFileName” is the same parameter as in the OpenRulesEngine’s

constructor that defines a location for the main xlIs-file.

There i1s also another constructor:

public Decision(String decisionName, OpenRulesEngine engine)

94©

OpenRules, Inc. OpenRules® User Manual

where the parameter OpenRulesEngine engine refers to an already created

instance of the OpenRulesEngine as in the above example.

Each decision has an associated object of type Glossary. When a decision is created, it
first executes the table “glossary” that must be defined in our rules repository. It fills out the
glossary, a step that applies to all consecutive decision executions. You may always access
the glossary by using the method

Glossary glossary = decision.getGlossary();

Decision Parameters

The class Decision is implemented as a subclass of the standard Java class
HashMap. Thus, you can put any object into the decision similarly as we did

above:

decision.put ("taxReturn", taxReturn) ;

You may access any object previously put into the decision by calling the method

get(name) as in the following example:

TaxReturn taxReturn = (TaxReturn)decision.get ("taxReturn");

You may set a special parameter

decision.put ("trace",”0ff”);

to tell your decision to turn off the tracing . You may use “On” to turn it on again.

Decision Runs

After defining decision parameters, you may execute the decision as follows:

decision.execute () ;

This method will execute your decision starting from the table of type “Decision”

whose name was specified as the first parameter of the decision’s constructor.

95 ©

OpenRules, Inc. OpenRules® User Manual

You may reset the parameters of your decision and execute it again without the
necessity of constructing a new decision. This is very convenient for multi-
transactional systems where you create a decision once by instantiating its
glossary, and then you execute the same decision multiple times but with
different parameters. To make sure that it is possible, the Decision’s method
execute() calls Excel’'s method “decisionObjects” each time before actually

executing the decision.

If you know that the types of decision parameters are changed between different

decision runs you may use the following variation of the method “execute”:

decision.execute (true) ;

The actual execution of “this” decision involves engine runs for the following

Excel methods (in this order):

- engine.run("decisionObjects",this);

- engine.run("initializeDecision",this);

- engine.run("initializeDecisionRun",this);
- engine.run(this); // run the main decision

- engine.run("finalizeDecision",this);

All these methods are described in the standard file “DecisionTemplates.xls”.
The method "initializeDecision" is executed only during the first decision run. It
calls the method "customlInitializeDecision" that may include an application
specific decision initialization.

The method "initializeDecisionRun" is executed during every decision run. It
calls the method "customInitializeDecisionRun" that may include a code that is
specific for every decision run, e.g. it may analyze the parameters of this run and
redefine some decision variables.

The method "finalizeDecision" is executed after the main Excel table of the type

“Decision” that was specified in the decision’s constructor.

96 ©

OpenRules, Inc. OpenRules® User Manual

Executing Decision Methods From Excel

There 1s one more form of this method:

decision.execute (String methodName) ;

It 1s used within Excel when you want to execute another Excel method. It is

implemented as follows:

public Object execute (String methodName) {
return getEngine () .run (methodName) ;

}

Decision Glossary

Every decision has an associated business glossary — see above. Glossaries are

usually presented in Excel tables that may look like this table "glossary":

Glossary glossary

Variable Business Concept Attribute
Gender gender
Date of Birth Customer dob
Marital Status maritalStatus
Greeting greeting
Salutation Response salutation
Current Hour hour

In large, real-world projects the actual content of business concepts such as the
above "Customer" can be defined in external applications using Java-based
Business Object Models or they may come from XML files, a database table, etc.
The list of attributes inside business objects can be very large and/or to be
defined dynamically. In such cases, you do not want to repeat all attributes in
your Excel-based glossary and then worry about keeping the glossary

synchronized with an IT implementation.

97 ©

OpenRules, Inc. OpenRules® User Manual

It is possible to programmatically define/extend the definition of the Glossary.
For example, we may leave in the Excel's glossary only statically defined
business concepts and their variables, e.g. in the above table we may keep only
the variables of the concept "Response" and remove all rows related to the
concept "Customer". Then in the Java module that creates an object "decision" of

the predefined type Decision we may add the following code:

Decision decision = new Decision (fileName) ;

String[] attributes = getCustomerAttributes();

String businessConcept = "Customer";

for (int 1 = 0; 1 < attributes.length; i++) {
String varName = attributes[i].getName () ;

decision.getGlossary () .put (varName,businessConcept,varName) ;

decision.put ("customer", customer);

decision.execute () ;

Here we assume that the method getCustomerAttributes () returns the
names of attributes defined in the class Customer. The variable name and the
attribute name are the same for simplicity - of course you may define them

differently.

You may add multiple concepts to the Glossary in a similar way. In all cases
keep in mind that the table "Glossary glossary" always has to be present in your
Excel repository even when it contain no rows. You also may find that the same
method put (variableName, businessConcept, attributeName) of the
class Glossary is used in the Glossary Template definition in the standard file

"DecisionTemplates.xls".

Business Concepts and Decision Objects

OpenRules® Glossary specifies names of business concepts that contain decision

variables. The connection (mapping) between business concepts and actual

98 ©

OpenRules, Inc.

OpenRules® User Manual

objects that implement these concepts (decision objects) is usually specified in

the Excel table “decisionObjects” that may look like:

DecisionObject decisionObjects

Business Object

Business Concept

Customer

.= decision.get("customer")

Request

.= decision.get("loanRequests")

Internal

internal

The standard mapping is implemented in the DecisionObjectTemplate using the

following Glossary’s method:

void useBusinessObject(String businessConcept, Object object)

What if you want to change actual business objects on the fly during the decision

execution? You can do it by using the same method inside your Excel rules. For

example, you may want to apply the following decision table “EvaluateAssets” for

all elements of an array “assets” of a given customer:

DecisionTable EvaluateAsset

Condition Condition Conclusion
Asset Name Asset Status Clistarner's Mestls
Status
Is One . .
of Assetl2, Asset21, Asset23 Is Active Is Sufficient

In this case you still may specify the business concept “Asset” in your glossary

only once, but you may associate different elements of an array “assets” with the

concept Asset multiple times in the loop similar to the one below:

99 ©

OpenRules, Inc. OpenRules® User Manual

Method void evaluateCustomerAssets(Customer customer)

Asset[] assets = customer.getAssets();
customer.customerAssetsStatus = "Insufficient”;
for(int i=0; i<assets.length; i++) {
getGlossary().useBusinessObject("Asset",customer.assetsi]);
EvaluateAsset();
if ("Sufficient".equals(customer.customerAssetsStatus))
return;

Changing Decision Variables Types between Decision Runs

OpenRules® Glossary does not require a user to specify actual types of the
variables - they are automatically defined from the actual types of decision
parameters. It allows you to change types of decision parameters between
decision runs without necessity to download all rules again. If you know that
some attributes corresponding to your decision variables may change their types
between different runs of the same decision, you may use the following Decision's

method:

execute (boolean objectTypesVary)

If the parameter "objectTypesVary" is true then before executing the
decision, the OpenRulesEngine will re-evaluate the decision's glossary and will
reset types of all object attributes based on the actual type of objects passed to
the decision as parameters. By default, the parameter "objectTypesvVary" is

false.

Decision Execution Modes

Before executing a decision you may validate it by setting a special “validation”

mode. Here is a code example:

String fileName = "file:rules/main/Decision.xls";
System.setProperty ("OPENRULES MODE", "Validate");
Decision decision = new

Decision ("DetermineDecisionVariable", fileName) ;

100 ©

OpenRules, Inc. OpenRules® User Manual

During the validation along with regular syntax check OpenRules® will validate
if the values for conditions and actions inside all decision tables correspond to

their glossary domains (if they are defined).

As you can see, the system property "OPENRULES_MODE" defines which mode
to use. By default this property is set to "Execute". If you create an

OpenRulesEngine before creation a Decision, you need to set this property first.

Generating Excel Files with Decision Tables

OpenRules® allows you to generate xls-files with multiple decision tables
programmatically by providing the proper Java API. The dJava class
DecisionBook that corresponds to one Excel workbook (or an xls-file) allows you
to add OpenRules® decision tables defined in Java. Multiple decision tables can
be added to a preliminary created instance of the DecisionBook class. Each new
decision table will be placed in a new worksheet of the same workbook. Then you

may simply save this decision book as an Excel file.

Example with Explanations

Let’s first consider an example provided in the standard OpenRules® installation
as the “DecisionWithGeneratedRules” project. In this project we want to run a
Java application (GenerateRules.java) to generate the following decision tables

in Excel:

DecisionTable DefineGreeting

If If Then

Current Hour (Current Hour |Result

==() ==1 Good Morning
=12 ==17 Good Afternoon
==18 ==21 Good Evening
»=22 ==24 Good Might

DecisionTable CheckGreeting
ConditionVarOperValue Message

=Var= <0Oper> <\alue> Message
Result |ls Mot {Good Afternoon |Error: Expected Good Afternoon
Result |ls Good Afternoon |Good Result

101 ©

OpenRules, Inc. OpenRules® User Manual

Here is the proper Java class GenerateRules.java:

import com.openrules.table.external.DecisionBook;
public class GenerateRules {
public static void main(String[] args) {
DecisionBook decisionBook = new DecisionBook();

decisionBook.addDecisionTable(

"DefineGreeting”, //table
"DecisionTableTemplate”, //template
new String[] { "If", "If", "Then" }, // labels
new String[] { "Current Hour","Current Hour","Result" }, //variables
new String[][] { //rules
new String[] {"»>=0","<=11","Good Morning"},
new String[] {"»>=12","<=17","Good Afternoon"},
new String[] {"»>=18","<=21","Good Evening"},
new String[] {">=22","<=24","Good Night"}
}
)s
decisionBook.addDecisionTable(
"CheckGreeting", //table name
"DecisionTableTemplate”, //template name
new String[] { "ConditionVarOperValue", "Message" },// labels
new String[] { "<Var> <Oper> <Value>", "Message" }, //titles
new String[][] { //rules
new String[] {"Result","Is Not","Good Afternoon",
"Error: Expected Good Afternoon"},
new String[] {"Result","Is","Good Afternoon"”, "Good Result"}
}
)s

decisionBook.saveToFile("./rules/include/Rules.x1s");

}
}

The first statement DecisionBook decisionBook = new DecisionBook(); simply
creates an instance of the class DecisionBook. Then we add two rule tables to
this decision book by using decisionBook.addDecisionTable(..);

Then you may easily map this Java structure to the above decision table
“DefineGreeting”. It is created based on the standard template
"DecisionTableTemplate". Then the strings { "If", "If", "Then" } define the
selected table columns from this template. The next array of strings { "Current

Hour", "Current Hour", "Result" } defines the names of decision variables used

102 ©

OpenRules, Inc. OpenRules® User Manual

in these columns. Then we have a two-dimensional array of strings where each
sub-array represents one rule (or the table row) such as

new String[] {"»>=0","<=11","Good Morning"}.

Depending on the column type, instead of the names of the decision variables the
column titles may contain any text in plain English. For example, the first
column in the second decision table “CheckGreeting” is defined as
“ConditionVarOperValue”, that according to the standard template has 3 sub-
columns. The title of this column is defined as “<var> <Oper> <Value>”. Note that
this title is “merged” while the content of the proper 3 sub-columns is defined
using 3 strings such as "Result","Is Not","Good Afternoon" in the unmerged

format.

Finally, this decision book is saved to the file “./rules/include/Rules.x1s” using

the method decisionBook.saveToFile("./rules/include/Rules.x1s");

Formal API

The Java class DecisionBook has a public constructor without parameters and

the following public methods:

public void addDecisionTable(

String tableName, // table name

String templateName, // template name

String[] labels, // template column labels
String[] descriptions, // descriptions or variables
String[][] rules // rules

)s
This method adds a new decision table to the rule book. The first parameter is
the name of the generated decision table (no spaces allowed). The second
parameter is the name of the standard OpenRules template that has one of the
following values:

e DecisionTableTemplate — for regular single-hit decision tables

e DecisionTablelTemplate — for multi-hit decision tables

e DecisionTable2Template — for rule sequences (see more)

103©

OpenRules, Inc. OpenRules® User Manual

The third parameter is an array of column labels selected from the proper
template. The fourth parameter is an array of names that corresponds to the
column type — it could be either a name of the decision variable or a title of the
proper column. The fifth parameter is a two-dimensional array of strings where

each sub-array represents one rule (or the decision table row).

The method

public void saveToFile(String x1sFile);

saves this decision book in the Excel file whose name is provided as a parameter.

The method

public int getNumberOfRuleTables();
returns a number of decision tables currently added to the decision book. Please
note that the proper Excel file will contain a separate worksheet for each

decision table.

Logging API

OpenRules® provides an API for decision logging. Assuming that “decision” is an

instance of the class Decision, you may use the following logging methods:
e To log (print) any text string you may write
decision.log(text);
e To memorize the execution log you may write

decision.saveRunLog(true);

decision.execute();

Then all log-statements produced during this decision run will be saved

internally.

¢ You may get this saved log as follows:

Vector<String> log = decision.getRunLog();

104 ©

OpenRules, Inc. OpenRules® User Manual

You may print the saved log by the method
decision.printSavedRunLog()

or you may save it into a file by the method

decision.printSavedRunLog(filename).

This feature is very useful when your application wants to show the good
results of the decision execution but also need to show the errors in the user-
defined decision model - see, for example, how it is done in the latest remote

evaluation version.

JSR-94 Implementation

OpenRules® provides a reference implementation of the JSR94 standard known

as Java Rule Engine API (see http://www.jcp.org/en/jsr/detail?id=94). The

complete OpenRules® installation includes the following projects:

JSR-94 Project | Description

This project contains the standard jsr94-
1.0 library

This is an OpenRules®'s reference
implementation for the JSR94 standard
com.openrules.jsr94|and includes the source code. It uses
OpenRulesEngine to implement
RuleExecutionSet

lib.jsr94

This is an example of using JSR94 for
HelloJsr94 simple rules that generate customized
greetings

Hellodspdsr94 is similar to Hellodsp but
uses the OpenRules® JSR-94 Interface to
create and run OpenRulesEngine for a web
application.

HelloJdspdsr94

Multi-Threading

OpenRulesEngine is thread-safe and works very efficiently in multi-threaded
environments supporting real parallelism. OpenRulesEngine is stateless, which

allows a user to create only one instance of the class OpenRulesEngine, and then

105©

http://openrules.com/eval_custom_projects.htm
http://openrules.com/eval_custom_projects.htm
http://www.jcp.org/en/jsr/detail?id=94

OpenRules, Inc. OpenRules® User Manual

share this instance between different threads. There are no needs to create a
pool of rule engines. A user may also initialize the engine with application data
common for all threads, and attach this data directly to the engine using the
methods setAttachment (Object attachment). Different threads will receive
this instance of the rule engine as a parameter, and will safely run various rules

in parallel using the same engine.

The complete OpenRules® installation includes an example "HelloFromThreads"
that demonstrates how to organize a parallel execution of the same
OpenRulesEngine's instance in different threads and how to measure their

performance.

INTEGRATION WITH JAVA AND XML

Java Classes

OpenRules® allows you to externalize business logic into xls-files. However,
these files can still use objects and methods defined in your Java environment.
For example, in the standard example “RulesRepository” all rule tables deal
with the Java object Appl defined in the Java package myjava.packagel.
Therefore, the proper Environment table inside file Main.xls (see above) contains

a property "import.java" with the value "myjava.packagel.*":

Environment

import_java myjava.packAl*
SubCategoryA1/RulesA11.xls
SubCategoryA1/RulesA12.xls

include

The property "import.java" allows vyou to define all classes

from the package following the standard Java notation, for

example "hello.*". You may also import only the specific
class your rules may need, as 1in the example above. You can
define a separate property "import.java" for every Java

package used or merge the property "import.java" into one cell
with many rows for different Java packages. Here 1is a more

complex example:

106 ©

OpenRules, Inc. OpenRules® User Manual

Environment

import.static com.openrules.tools.Methods
my.bom.*
my.impl.*
H *
import,java my.inventory.

com.openrules.ml.*
my.package.MyClass
com.3rdparty.*
.Jinclude/Rulesl.xls
.Jinclude/Rules2.xls

include

Naturally the proper jar-files or Java classes should be in the classpath of the

Java application that uses these rules.

If you want to use static Java methods defined in some standard Java libraries
and you do not want to specify their full path, you can use the property
"import.static". The static import declaration imports static members from
Java classes, allowing them to be used in Excel tables without -class
qualification. For example, many OpenRules® sample projects use static
methods from the standard Java library com.openrules.tools that includes class
Methods. So, many Environment tables have property "import.static"

defined as "com.openrules.tools.Methods". This allows you to write
out ("Rules 1")
instead of

Methods.out ("Rules 1")

XML Files

Along with Java classes, OpenRules® tables can use objects defined in XML files.
For example, the standard sample project HelloXMLCustomer uses an object of

type Customer defined in the file Customer.xml located in the project classpath:

<Customer

name="Robinson"

107 ©

OpenRules, Inc. OpenRules® User Manual

gender="Female"
maritalStatus="Married"
age="55"

/>

The xls-file, HelloXmlCustomer.xls, that deals with this object includes the

following Environment table:

Environment

import_static com.openrules_tools. Methods
import.schema classpath:/Customer.xml|
import_java hello.Response

include include/HelloRules xls

The property, "import.schema", specifies the location of the proper xml-file, in
this case "classpath:/Customer.xml". Of course, you can use any other
location in your local file system that starts with the prefix "file:". This

example also tells you that this Excel file uses:

1. static Java methods defined in the standard OpenRules® package
"com.openrules.tools.Methods"

2. xml-file"classpath:/Customer.xml"

3. Javaclass "Response" from a package "hello"

4. include-file "HelloRules.xIs™ which is located in the subdirectory “include" of the

directory where the main xIs file is located.
The object of the type "Customer" can be created using the following API:

Customer customer = Customer.load("classpath:/Customer.xml");

You may use more complex structures defined in xml-files. For example, the

project HelloXMLPeople uses the following xml-file:

<?xml version="1.0" encoding="UTF-8"?>
<People type="Array of Person(s)">
<Person name="Robinson" gender="Female" maritalStatus="Married"
age="55" />
<Person name="Robinson" gender="Female"
maritalStatus="Single" age="23" />

108 ©

http://openrules.com/HelloXmlCustomer.xls

OpenRules, Inc. OpenRules® User Manual

<Person name="Robinson" gender="Male"
maritalStatus="Single" age="17" />

<Person name="Robinson" gender="Male"
maritalStatus="Single" age="3" />
</People>

The method that launches greeting rules for every Person from an array

People is defined as:

Method void helloPeople()

int hour = Calendar.getinstance().get(Calendar HOUR_OF_DAY):
App app = new App().
defineGreeting(hour, app);
/! define and greet People from the XML file People xml
People people = People_load("classpath:/People.xml");
for(int i = 0; i < people.Person_length; ++i)
{
People Person person = people Person[i];
defineSalutation(person.app);
//greet Person
System_ out_printin(app.greeting+", "+app.salutation+" "+person.name+"1");

}

DATA MODELING

OpenRules® includes an ability to define new data/object types and creates the
objects of these types directly in Excel. It allows business analysts to do Rule
Harvesting by defining business terms and facts without worrying about their
implementation in Java, C#, or XML. It also provides the ability to test the
business rules in a pre-integrated mode. To do standalone rule testing, a
designer of rules and forms specifies his/her own data/object types as Excel
tables and creates instances of objects of these types passing them to the rule

tables. We describe how to do it in the sections below.

There is one more important reason why a business or even a technical specialist
may need data modeling abilities without knowing complex software

development techniques. In accordance with the SOA principle of loosely coupled

109 ©

http://www.service-architecture.com/

OpenRules, Inc. OpenRules® User Manual

services, rule services have to specify what they actually need from the objects
defined in an external environment. For example, if an object "Insured" includes
attributes related to a person's military services, it does not require that all
business rules that deal with the insured be interested in those attributes. Such
encapsulation of only the essential information in the Excel-based data types,
together with live process modeling, allows OpenRules® to complete the rule

modeling cycle without leaving Excel.

OpenRules® provides the means to make business rules and forms independent
of a concrete implementation of such concepts. The business logic expressed in
the decision tables should not depend on the implementation of the objects these
rules are dealing with. For example, if a rule says: “If driver's age is less than 17
then reject the application” the only thing this business rule should "know" about
the object “driver” is the fact that it has a property “age” and this property has a
type that support a comparison operator “<” with an integer. It is a question of
configuration whether the Driver is a Java class or an XML file or a DB table
from a legacy system. Similarly, if a form has an input field "Driver's Age", the
form should be able to accept a user's input into this field and automatically
convert it into the proper object associated with this field independently of how

this object was implemented.

Thus, OpenRules® supports data source independent business rules (decision
tables) and web forms. Your business rules can work with an object of type
Customer independently of the fact that this type is defined as a Java class, as
an XML file or as an Excel table. You can see how it can be done using examples
HelloJava, HelloXML, and HelloRules from the OpenRules®s standard
installation. It is a good practice to start with Excel-based data types. Even if you
later on switch to Java classes of other data types, you would always be able to

reuse Excel-based types for standalone testing of your rules-based applications.

Datatype and Data Tables

OpenRules® allows a non-technical user to represent different data types directly in Excel and

to define objects of these types to be used as test data. Actually, it provides the ability to

110©

OpenRules, Inc. OpenRules® User Manual
create Excel-based Data Models, which, in turn, define problem specific business terms and
facts. At the same time, a data model can include data types specified outside Excel, for
example in Java classes or in XML files. Here is an example of a simple data type

"Personallnfo™;

Datatype Personallnfo

String id

String firsthlame
String middlelnitial
String lastMame
String address
String appartment
String city

String state
String zipCode

Now we can create several objects of this type "PersonalInfo" using the following data
table:

Data Personallnfo personallnformation

id D He She
firstilame First Mame John Mary
middlelnitial Middle Initial M. A
lastName Last Name Smith Smith
address Address 25 Maple Street

appartment appartment Apt. 3C

city City Edison

state State MJ

zipCode ZipCode f08840

We can reference to these objects inside rules or forms as in the following snippets:

out (personalInformation["He"].lastName) ;

if (personallInformation["She"].state.equals ("NJ"))

You may use one datatype (such as PersonalInfo) to define a more complex aggregate

datatype, like TaxReturn in this example:

111©

OpenRules, Inc. OpenRules® User Manual

Datatype TaxReturn

Personalinfo taxPayer

Personallnfo spouse

boolean marriedFillingJointly

boolean claimedAsDependent
boolean spouseClaimedAsDependent
double wages

double taxablelnterest

double unemploymentCompensation
double adjustedGrossincome

double dependentAmount

double taxablelncome

double taxWithheld

double earnedincomeCredit

double totalPayments

double tax

double refund

You may even create an object of the new composite type "TaxReturn" using references to

the objects "He" and "She" as in this example:

Data TaxReturn taxReturns

taxPayer Spouse wages Exablelntere taxWithheld |earnedincomeCredit

=personallnformation |=personallnformation

Taxable ! Earned Income
TaxPayer Spouse Wages i Tax Withheld Credit

He She 32026 1450 4530 230

Now we can reference these objects from inside rules or forms as in the following snippet:
out (taxReturn[0] .taxPayer.lastName) ;

The above tables may remind you of traditional database tables simply presented in Excel.
While these examples give you an intuitive understanding of OpenRules® Datatype and Data

tables, the next sections will provide their formal descriptions.

112 ©

OpenRules, Inc. OpenRules® User Manual

You may use a type of table "Variable". These tables are similar to the Data tables but
instead of arrays of variables they allow you to create separate instances of objects directly in

Excel files. Here is a simple example:

Variable Customer mary

name age gender maritalStatus
Name Age Gender Marital Status
Mary Brown 5 Female Single

The variable "mary" has type Customer and can be used inside rules or passed back from an
OpenRulesEngine to a Java program as a regular Java object. As usual, the object type

Customer can be defined as a Java class, an Excel Datatype, or an xml structure.

How Datatype Tables Are Organized

Every Datatype table has the following structure:

Datatype tableName

AttributeTypel AttrubuteNamel
AttributeType2 AttrubuteName2

The first "signature" row consists of two merged cells and starts with the
keyword "Datatype". The "tableName" could be any valid one word identifier of
the table (a combination of letters and numbers). The rows below consist of two
cells with an attribute type and an attribute name. Attribute types can be the

basic Java types:

boolean

char

int

double

long

String (java.lang.String)

Date (java.util.Date)

113©

OpenRules, Inc. OpenRules® User Manual

You may also use data types defined:

in other Excel Datatype tables
in any Java class with a public constructor with a single parameter of the type String

as one-dimensional arrays of the above types.

The datatype "Personallnfo" gives an example of a very simple datatype. We can

define another datatype for a social security number (SSN):

Datatype SSN

String s5n
String 55n2
String ssn3

and add a new attribute of this type to the datatype "Personallnfo":

Datatype Personallnfo

String id

String firsthame
String middlelnitial
String lastName
String address
String appartment
String city

String state
String zipCode
SSM 55N

It is interesting that these changes do not affect the already existing data
objects defined above (like personalInformation["He"]) - their SSNs just

will not be defined.

Implementation Restriction. Make sure that the very first attribute in a Datatype

table has type String or your own type but not a basic Java type like int.

The following example demonstrates how to create a Data table for a Datatype

that includes one-dimensional arrays:

114 ©

OpenRules, Inc.

OpenRules® User Manual

Datatype Order

String

number

String[]

selectedltems

String(]

offeredltems

double

total Amount

String

status

Here is an example of the proper Data table:

Data Order orders

number selectedltems [totalAmount| status
Total
Number Selected Items Amount Status
INTRS-PGS394
6P-U01 INTRS-PGS456 3700 In Progress
Paste-ARMC-2150

You may also present the same data in the following way:

Data Order orders
number selectedltems totalAmount
Selected Items
Number ltem 1 ltem 2 ltem 3 Total Amount
INTRS- INTRS- Paste-ARMC-
6P-U01 PGS394 PGS456 2150 3700

Every Datatype table has a vertical or horizontal format. A typical vertical Data table has the

following structure:

Data datatypeName tableName

AttributeNamel | AttributeName2 | AttributeName3
from from from
"datatypeName" | "datatypeName" | "datatypeName"
Display value of | Display value of | Display value of
the the the

115©

OpenRules, Inc.

OpenRules® User Manual

AttributeNamel

AttributeName2

AttributeName3

data

data

data

data

data

data

The first "signature" row consists of two merged cells and starts with the
keyword "Data". The next word should correspond to a known datatype: it can be
an already defined Excel Datatype table or a known Java class or an XML file.
The "tableName" is any one word valid identifier of the table (a combination of

letters and numbers).

The second row can consists of cells that correspond to attribute names in the
data type "datatypeName". It is not necessary to define all attributes, but at

least one should be defined. The order of the columns is not important.

The third row contains the display name of each attribute (you may use

unlimited natural language).

All following rows contain data values with types that correspond to the types of

the column attributes.

Here is an example of the Data table for the datatype "PersonalInfo" defined

in the previous section (with added SSN):

Data Personallnfo personallnformation

id firstName middlelnitial lastMame 5sn.55n1 55N.55N2 55n.55N3
D First Mame Middle Initial Last Mame |SSN1 S5MN2 S5M3

He John M. Smith 164 86 2298
She Mary A Smith 627 35 1293

The table name is "personalInformation" and it defines an array of objects of
the type PersonalInfo. The array shown consists only of two elements
personalInformation[0] for John and personalInformation[1] for Mary.

You may add as many data rows as necessary.

116 ©

OpenRules, Inc. OpenRules® User Manual

The attributes after the SSN attribute have not been defined. Please, note that
the references to the aggregated data types are defined in a natural way
ssn.ssn3) using the dot-convention.

(ssn.ssnl, ssn.ssn2,

As you can see from this example, the vertical format may not be very convenient

when there are many attributes and not so many data rows. In this case, it could

be preferable to use a horizontal format for the data tables:

Data datatypeName tableName

AttributeNamel | Display value of the dataldatal data
from "datatypeName"| AttributeNamel
AttributeName2 from| Display value of the
"datatypeName" AttributeName2 data data|data
AttributeName3 from| Display value of the
"datatypeName™ AttributeName3 data data| data

Here is how our data table will look when presented in the horizontal format:

Data Personallnfo personallnformation

id D He She
firsthlame First Mame John Mary
middlelnitial Middle Initial M. A
lastName Last Name Smith Smith
ssn.ssnl SSN1 164 627
55n.55n2 S5N2 86 35
55n.55n3 SSN3 2295 1293
address Address 25 Maple Street

appartment appartment Apt. 3C

city City Edison

state State MJ

zipCode ZipCode f08840

Predefined Datatypes

OpenRules® provides predefined Java classes to create data tables for arrays of

integers, doubles, and strings. The list of predefined arrays includes:

117©

OpenRules, Inc.

1. ArrayInt - for arrays of integer numbers, e.g.:

Method int[] getTerms()
return Arraylnt.getValues(terms);

Data Arrayint terms

value
Term
36
72
108
144

2. ArrayDouble - for arrays of real numbers, e.g.:

Method double[] getCosts()

return ArrayDouble.getValues(costs);

Data ArrayDouble costs

value
Costs
$295.50
$550.00
$1,000.00
$2,000.00
$3,295.00
$5,595.00
$8,895.00

3. ArrayString - for arrays of strings, e.g.:

Method String[] getRegions()
return ArrayString.getValues(regions);

Data ArrayString regions

value
Region

NORTHEAST
MID-ATLANTIC
SOUTHERN
MIDWEST
MOUNTAIN
PACIFIC-COAST

OpenRules® User Manual

118©

OpenRules, Inc. OpenRules® User Manual

These arrays are available from inside an OpenRules® table by just calling their

names: getTerms(), getCosts(), getRegions(). You may also access these

arrays from a Java program, using this code:

OpenRulesEngine engine =
new OpenRulesEngine ("file:rules/Data.xls");
int[] terms = (int[])engine.run("getTerms");
The standard installation includes a sample project "DataArrays", that shows
how to deal with predefined arrays.
Accessing Excel Data from Java - Dynamic Objects

You can access objects created in Excel data tables from your Java program.
These objects have a predefined type DynamicObject. Let's assume that you

defined your own Datatype, Customer, and created an array of customers in

Excel:

Data Customer customers

name maritalStatus gender age
SIS e Marital Status Gender Age
Name
Robinson Married Female 24
Smith Single Male 19

Method Customer[] getCustomers()
return customers;

In you Java program you may access these objects as follows:

OpenRulesEngine engine

new OpenRulesEngine ("file:rules/Data.x1ls");

DynamicObject[] customers =
(DynamicObject[])engine.run ("getCustomers") ;
System.out.println ("\nCustomers:") ;

for (int i=0; i<customers.length; i++)

System.out.println ("\t"+customers([i]);

119©

OpenRules, Inc. OpenRules® User Manual

This code will print:

Customer (1d=0) {
name=Robinson
age=24
gender=Female
maritalStatus=Married

}
Customer (id=1) {
name=Smith
age=19
gender=Male
maritalStatus=Single

You may use the following methods of the class DynamicObject:

public Object getFieldValue (String name) ;

public void setFieldValue (String name, Object wvalue);

For example,

String gender = (String) customers[0].getFieldValue ("gender");

will return "Female", and the code

customer.setFieldvValue ("gender", "Male");
customer.setFieldValue ("age", 40);

will change the gender of the object customers[0] to "Male" and his age to 40.

How to Define Data for Aggregated Datatypes

When one Datatype includes attributes of another Datatype, such datatypes are
usually known as aggregated datatypes. You have already seen an example of an
aggregated type, PersonalInfo, with the subtype SSN. Similarly, you may
have two datatypes, Person and Address, where type Person has an attribute
"address" of the type Address. You may create a data table with type Person
using aggregated field names such as "address.street", "address.city",
"address.state", etc. The subtype chain may have any length, for example

"address.zip.first5" or "address.zip.last4". This feature very

120©

OpenRules, Inc. OpenRules® User Manual

conveniently allows a compact definition of test data for complex interrelated

structures.

Finding Data Elements Using Primary Keys

You may think about a data table as a database table. There are a few things
that make them different from traditional relational tables, but they are
friendlier and easier to use in an object-oriented environment. The very first
attribute in a data table is considered to be its primary key. For example, the
attribute "id" is a primary key in the data table "personallnformation" above.
You may use values like "He" or "She" to refer to the proper elements of this
table/array. For example, to print the full name of the person found in the array

"personallnformation", you may write the following snippet:
PersonalInfo pi = personallInformation["He"];
out (pi.fisrtName + " " + pi.middeInitial + ". "

+ pi.lastName) ;

Cross-References Between Data Tables

The primary key of one data table could serve as a foreign key in another table
thus providing a cross-reference mechanism between the data tables. There is a

special format for data tables to support cross-references:

Data datatypeName tableName

AttributeNamel from AitributeName2 AttributeName3 from
"datatypeName" L1 "datatypeName"
"datatypeName™
>referencedDataTablel >referencedDataTable2
Display value of the D'ST?i/h\éalue Display value of the
AttributeNamel AttributeName2 AttributeName3
data data data
data data data

121 ©

OpenRules, Inc. OpenRules® User Manual
This format adds one more row, in which you may add references to the other
data tables, where the data entered into these columns should reside. The sign

">" is a special character that defines the reference, and "referencedDataTable"

1s the name of another known data table. Here is an example:

Data TaxReturn taxReturns

taxPayer Spouse wages Exablelntere taxWWithheld |eamedincomeCredit
=personallnformation |=personallnformation
Taxable . Earned Income
TaxPayer Spouse Wages i Tax Withheld Credit
He She 32026 1450 4530 230
Both columns "TaxPayer" and "Spouse" use the reference

">personallnformation". It means that these columns may include only primary
keys from the table, "personallnformation”. In our example there are only two
valid keys, He or She. If you enter something else, for example "John" instead of
"He" and save your Excel file, you will receive a compile time (!) error "Index Key
John not found" (it will be displayed in your Eclipse Problems windows). It is
extremely important that the cross-references are automatically validated

at compile time in order to prevent much more serious problems at run-time.

Multiple examples of complex inter-table relationships are provided in the
sample rule project Autolnsurance. Here is an intuitive example of three related

data tables:

Data Driver drivers

name age gender maritalStatus dmvPoints
Name Age Gender Fgantal DMV Points
tatus
John Smith 24 Male Single 2
Mary Smith 19 Female Single 0

122 ©

OpenRules, Inc. OpenRules® User Manual

Data Vehicle vehicles

id make model wear hasAbs

1D Make Model Year Has ABS
Veh 1 MNissan Maxima 2000 TRUE
Veh 2 Toyota Corrala 1999 FALSE

Data Usage usages

driver vehicle usage
> drivers >yehicles
Driver Vehicle Usage(%)
John Smith Weh 1 100
Mary Smith Veh 2 100

See more complex examples in the standard project “AutoInsurance”.

OPENRULES® REPOSITORY

To represent business rules OpenRules® wutilizes a popular spreadsheet
mechanism and places rules in regular Excel files. OpenRules® allows users to
build enterprise-level rules repositories as hierarchies of inter-related xls-files.
The OpenRules® Engine may access these rules files directly whether they are
located in the local file system, on a remote server, in a standard version control

system or in a relational database.

Logical and Physical Repositories

The following picture shows the logical organization of an OpenRules® repository

and its possible physical implementations:

123©

OpenRules, Inc. OpenRules® User Manual

Physical Rule Repositories

file:
Logical Rule Repository classpath: I Local File System
' 1 ;
2Bl Rae HF B e B Beaiiote
Workbooks 2 fip: Application
Decision Tables, =2 - Servers
Rulz Templatzs, 8 >
,,,,, Dats Modzling, =
Ruls Tasts, Lk =
Fo-"j’i‘:j:;ts 8 J‘ g http: | Version Control
o Repositories
(Subversion/CV'S)
External|Rules ab:
dbv:

Logically, OpenRules® Repository may be considered as a hierarchy of rule
workbooks. Each rule workbook is comprised of one or more worksheets that can
be used to separate information by types or categories. Decision tables are the
most typical OpenRules® tables and are used to represent business rules. Along
with rule tables, OpenRules® supports tables of other types such as: Form
Layouts, Data and Datatypes, Methods, and Environment tables. A detailed

description of OpenRules® tables can be found here.

Physically, all workbooks are saved in well-established formats, namely as
standard xls- or xml-files. The proper Excel files may reside in the local file
system, on remote application servers, in a version control system such as

Subversion, or inside a standard database management system.

OpenRules® uses an URL pseudo-protocol notation with prefixes such

as "file:", "classpath:", "http://", "ftp://", "db:", etc.

124 ©

http://openrules.com/docs/man_spreadsheets.html

OpenRules, Inc. OpenRules® User Manual

Hierarchies of Rule Workbooks

An OpenRules® repository usually consists of multiple Excel workbooks
distributed between different subdirectories. Each rule workbook may include
references to other workbooks thus comprising complex hierarchies of inter-

related workbooks and rule tables.

Included Workbooks

Rules workbooks refer to other workbooks using so called "includes" inside the
OpenRules® "Environment" tables. To let OpenRules® know about such include-
relationships, you have to place references to all included xlIs-files into the table
"Environment". Here is an example of an OpenRules® repository that comes

with the standard sample project "RuleRepository":

B rules The main xlIs-file "Main.xls" is located in the local directory
. Bz CategoryA "rules/main”. To invoke any rules associated with this file,
. B+{& SubCategoryAl the proper Java program creates an OpenRulesEngine using
% RulesA11.s a string "file:rules/main/Main.xls" as a parameter.
) RUeA LI There are many other xIs-files related to the Main.xIs and
g 23::::;::: located in different subdirectories of "rules”. Here is a
. : fragment of the Main.xls "Environment™ table:
(= CategoryB
- L3%) RulesB1.xs _ICategoryA/RulesA1 xls
: % RulesB2.xls _ICategoryA/RulesA2 xls
- Common s _./CategoryB/RulesB1 xls
- lbA _/CategoryB/RulesB2 xls
- 28] libRulesX.xls _/Common/libA/libRulesX xls
, % libRulesY . xls _./Common/libA/libRulesY xIs
E]@ main

)

As you can guess, in this instance all included files are defined relative to the
directory "rules/main" in which “Main.xls” resides. You may notice that files
“RulesA11.xls” and “RulesA12.xls” are not included. The reason for this is that
only “RulesAl.xls” really "cares" about these files. Naturally its own table

"Environment" contains the proper "include":

Environment

import_java myjava.packAl*
SubCategoryA1/RulesA11.xls
SubCategoryA1/RulesA12.xls

include

125©

OpenRules, Inc. OpenRules® User Manual

Here, both "includes" are defined relative to the directory "CategoryA" of their
"parent" file “RulesAl.xls”. As an alternative, you may define your included files

relative to a so called "include.path" - see sample in the next section.

Include Path and Common Libraries of Rule Workbooks

Includes provide a convenient mechanism to create libraries of frequently used
xls-files and refer to them from different rule repositories. You can keep these
libraries in a file system with a fixed "include.path". You may even decide to
move such libraries with common xlIs-files from your local file system to a remote
server. For instance, in our example above you could move a subdirectory "libA"
with all xls-files to a new location with an http
address http://localhost:8080/my.common.lib. In this case, you should first define
a so-called "include.path" and then refer to the xls-files relative to this

include.path using angle brackets as shown below:

include path http-//localhost-8080/my commen lib/ |
<libA/libRulesX xls>

<libA/libRulesX xls>

include

Here we want to summarize the following important points:

The structure of your rule repository can be presented naturally inside xls-
files themselves using "includes"

The rule repository can include files from different physical locations
Complex branches on the rules tree can encapsulate knowledge about their

own organization.

Using Regular Expressions in the Names of Included Files

Large rule repositories may contain many files (workbooks) and it is not
convenient to list all of them by name. In this case you may use regular
expression inside included file names within the Environment table. For

example, consider in the following Environment table:

126 ©

http://localhost:8080/my.common.lib

OpenRules, Inc. OpenRules® User Manual

Environment

include ../categoryl/*.xls
include ../category2/XYZ*.xls
include ../category3/A?.xls

The first line will include all files with an extension “xls” from the folder
“categoryl”. The second line will include all files with an extension “xIs” and
which names start with “XYZ” from the folder “category2”. The third line will
include all files with an extension “xls” that start with a letter “A” following

exactly one character from the folder “categoryl”.

Cge??

Actually along with wildcard characters or “?” you may use any standard

regular expressions to define the entire path to different workbooks.

Imports from Java

OpenRules® allows you to externalize business logic into xls-files. However,
these files still can use objects and methods defined in your Java environment.
For example, in the standard example “RulesRepository” all rule tables deal with
Java objects defined in the Java package myjava.packagel. Therefore, the
proper Environment table inside file Main.xls (see above) contains a property

"Import.java" with value "myjava.packagel.*".

Usually, you only place common Java imports inside the main xls-file. If some
included xls-files use special Java classes you can reference them directly from

inside their own Environment tables.

Imports from XML

Along with Java, OpenRules® allows you to use objects defined in XML files. For
example, the standard sample project “HelloXMLCustomer” uses an object of the

type, Customer, defined in the file Customer.xml located in the project classpath:

<Customer
name="Robinson"
gender="Female"

maritalStatus="Married"

127©

http://docs.oracle.com/javase/tutorial/essential/regex/char_classes.html

OpenRules, Inc. OpenRules® User Manual

age="55"
/>

The xls-file “HelloCustomer.xls” that deals with this object includes the following

Environment table:

Environment

import_static com.openrules_tools Methods
import.schema classpath:/Customer.xml
import_java hello.Response

include include/HelloRules xls

The property "import.schema" gspecifies the location of the proper xml-file, in
this case "classpath:/Customer.xml" Of course, it could be any other
location in the file system that starts with the prefix "file:". This example also

tells you that this Excel file uses:

1. static Java methods defined in the standard OpenRules® package
"com.openrules.tools.Methods"

2. xml-file "classpath:/Customer.xml"

3. Java class "Response" from a package "hello"

4. include-file "HelloRules.xls" that is located in the subdirectory "include" of

the directory where the main xIs file is located.

Parameterized Rule Repositories

An OpenRules® repository may be parameterized in such a way that different
rule workbooks may be invoked from the same repository under different
circumstances. For example, let's assume that we want to define rules that offer
different travel packages for different years and seasons. We may specify a
concrete year and a season by using environment variables YEAR and SEASON.

Our rules repository may have the following structure:

rules/main/Main.x1s

rules/common/CommonRules.x1s

128 ©

OpenRules, Inc. OpenRules® User Manual

rules/2007/SummerRules.xls
rules/2007/WinterRules.xls
rules/2008/SummerRules.xls

rules/2008/WinterRules.xls

To make the OpenRulesEngine automatically select the correct rules from such a
repository, we may use the following parameterized include-statements inside

the Environment table of the main xls-file rules/main/Main.xls:

Environment

import.java season.offers.*
include ../common/SalutationRules.xls
include J${YEAR}${SEASON}Rules.xls

Thus, the same rules repository will handle both WinterRules and SummerRules
for different years. A detailed example is provided in the standard project

SeasonRules.

Rules Version Control

For rules version control you can choose any standard version control system
that works within your traditional software development environment. We
would recommend using an open source product "Subversion" that is a
compelling replacement for CVS in the open source community. For business
users, a friendly web interface is provided by a popular open source product
TortoiseSVN. For technical users, it may be preferable to use a Subversion
incorporated into Eclipse IDE. One obvious advantage of the suggested approach
is the fact that both business rules and related Java/XML files will be handled by

the same version control system.

You may even keep your Excel files with rules, data and other OpenRules® tables
directly in Subversion. If your include-statements use http-addresses that point

to a concrete Subversion repository then the OpenRulesEngine will dynamically

129 ©

http://subversion.tigris.org/
http://tortoisesvn.tigris.org/
http://www.eclipse.org/

OpenRules, Inc. OpenRules® User Manual

access SVN repositories without the necessity to move Excel files back into a file

system.

Another way to use version control is to place your rule workbooks in a database
and use DBV-protocol to access different versions of the rules in run-time -

read more.

Rules Authoring and Maintenance Tools

OpenRules® relies on standard commonly used tools (mainly from Open Source)

to organize and manage a Business Rules Repository:

Business Rules Repository Maintenance Tools User Interfaces
— Test Data —
N Tortoise
A : e Business
Business Users
Eclipse
Interface
Technical
Users

llf*,
‘IMe/rfaces,v Business
Users
Caa

i—. Access Control 7
“Processing Logic

1 g
Decision

Eclipse
Interfaces Technical
Users
e Eclipse
fStvle Sheets — Interface
‘_Inter‘ag:_ﬁon Logic : <«
b l Technical
Web Users
DB
Interface W
«—— >
DB Admin

130©

http://openrules.com/docs/man_repositoryDB2.html

OpenRules, Inc. OpenRules® User Manual

To create and edit rules and other tables presented in Excel-files you may use

any standard spreadsheet editors such as:

MS Excel™

OpenOffice™
Google Spreadsheets™

Google Spreadsheets are especially useful for sharing spreadsheet editing - see

section Collaborative Rules Management with Google Spreadsheets.

For technical people responsible for rules project management OpenRules

provides an Eclipse Plug-in that allows them to treat business rules as a natural

part of complex Java projects.

DATABASE INTEGRATION

OpenRules® provides a user with ability to access data and rules defined in
relational databases. There are two aspects of OpenRules® and database

integration:

1. Accessing data located in a database

2. Saving and maintaining rules in a database as Blob objects.

The detailed description of database integration in provided at

http://openrules.com/pdf/OpenRulesUserManual.DB.pdf.

EXTERNAL RULES

OpenRules® allows a user to create and maintain their rules outside of Excel-
based rule tables. It provides a generic Java API for adding business rules from

different external sources such as:

1. Database tables created and modified by the standard DB management
tools

2. Live rule tables in memory dynamically modified by an external GUI

131©

http://openrules.com/ruleeditors.htm
http://openrules.com/RuleEditors.htm#Creating and Managing Rules with Excel and OpenOffice
http://openrules.com/RuleEditors.htm#Creating and Managing Rules with Excel and OpenOffice
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets
http://openrules.com/ruleeditors.htm#Shared Rules Management with Google Spreadsheets
http://openrules.com/ruleproject.htm
http://openrules.com/pdf/OpenRulesUserManual.DB.pdf

OpenRules, Inc. OpenRules® User Manual

3. Java objects of the predefined type “RuleTable”
4. Problem-specific rule sources that implement a newly offered rules

provider interface.

With external rules you may keep the business parts of your rules in any
external source while the technical part (Java snippets) will remain in an Excel-
based template, based on which actual rules will be created by the
OpenRulesEngine. For example, you may keep your rules in a regular database
table as long as its structure corresponds to the columns (conditions and actions)
of the proper Excel template. Thus, the standard DB management tools, or your
own GUI that maintains these DB-based rule tables, de-facto become your own

rules management environment.

The external rules may also support a preferred distribution of responsibilities
between technical and business people. The business rules can be kept and
maintained in a database or other external source by business analysts while
developers can continue to use Excel and Eclipse to maintain rule templates and

related software interfaces.

The detailed description of external rules in provided at

http://openrules.com/pdf/OpenRulesUserManual. ExternalRules.pdf.

OPENRULES® PROJECTS

Pre-Requisites
OpenRules® requires the following software:
Java SE JDK 1.5 or higher

Apache Ant 1.6 or higher

MS Excel or OpenOffice or Google Docs (for rules and forms editing only)

Eclipse SDK (optional, for complex project management only)

Sample Projects

132©

http://openrules.com/pdf/OpenRulesUserManual.ExternalRules.pdf
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://office.microsoft.com/home/
http://download.openoffice.org/1.1.1/index.html
https://www.google.com/accounts/ServiceLogin?service=wise&passive=true&nui=1&continue=http://spreadsheets.google.com/ccc?new
http://www.eclipse.org/downloads/

OpenRules, Inc. OpenRules® User Manual

The complete OpenRules® installation includes the following workspaces:

openrules.decisions - decision projects

openrules.rules - various rules projects

openrules.dialog — rules-based web questionnaires
openrules.web - rules-based web applications & web services
openrules.solver - constraint-based applications.

Each project has its own subdirectory, e.g. "DecisionHello". OpenRules® libraries
and related templates are located in the main configuration project,
“openrules.config”, included in each workspace. A detailed description of the

sample projects is provided in the Installation Guide.

Main Configuration Project

OpenRules® provides a set of libraries (jar-files) and Excel-based templates in the folder

“openrules.config” to support different projects.

Supporting Libraries

All OpenRules® jar-files are included in the folder, “openrules.config/1ib”.

For the decision management projects you need at least the following jars:

e openrules.all.jar

e poi-3.6-20091214.jar

e commons-logging-1l.1l.jar (or higher)

e commons-logging-api-1.1.jar (or higher)
e commons-lang-2.3.jar (or higher)

e log4j-1.2.15.jar (or higher)

e commons-beanutils.jar (or higher)

There is a supporting library
e com.openrules.tools.jar
contains the following optional facilities:
- operators described in the Java class Operator that can be used inside your

own Rules tables and templates

1330

http://openrules.com/downloads/protected/build/openrules_6.0.1.web.zip
http://openrules.com/downloads/protected/build/openrules_6.0.1.solver.zip
http://openrules.com/pdf/OpenRulesInstallationGuide.pdf

OpenRules, Inc. OpenRules® User Manual

- convenience methods like “out (String text)” described in the Java class

Methods
- asimple JDBC interface DbUt il
- text wvalidation methods like “isCreditCardvalid(String text)”

described in the Java class Vvalidator.

If you use the JSR-94 interface you will also need

e com.openrules.jsr94.jar

If you use external rules from a database you will also need

e openrules.db.jar

e openrules.dbv.jar

e derby.jar

e commons-cli-1.1.jar.

" G

Different workspaces like “openrules.decisions”, “openrules.rules”, etc

include the proper versions of the folder “openrules.config”.

Predefined Types and Templates

The Excel-based templates that support Decisions and Decision Tables included

in the folder, “openrules.config”:

e DecisionTemplates.xls
e DecisionTableExecuteTemplates.xls
e DecisionTableValidateTemplates.xls

Sample decision projects include Excel tables of the type “Environment” that
usually refer to “../../../openrules.config/DecisionTemplates.xls”.

You may move all templates to another location and simply modify this reference

making it relative to your main xls-file.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or to this
Discussion Group. Read more at http://openrules.com/services.htm.

134©

mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules
http://openrules.com/services.htm

