
IntelliFest 2012
International Conference on Reasoning Technologies

INTELLIGENCE IN THE CLOUD

Modeling and Solving Decision
Optimization Problems

Jacob Feldman, PhD
OpenRules, Inc., CTO
www.openrules.com

1

San Diego, Oct-2012

 Decision Optimization
• Decision Optimization helps business people to:

– make better decisions

– by finding optimal (close to optimal) solutions

– among multiple alternatives

– subject to different business constraints

• Find the best possible resource utilization to achieve
a desired optimization objective such as:

– minimizing expenses or travel time

– maximizing ROI or service level, etc.

• Relies on proven mathematical techniques such as:

– Constraint and Linear Programming (CP/LP)

– integrated in modern decision modeling frameworks

2 © OpenRules, Inc., 2012

Typical CP Applications

• Scheduling and
Resource Allocation

• Complex
Configuration
Problems

• Supply Chain
Management

• Staff Rostering

• Vehicle Routing

3 © OpenRules, Inc., 2012

Constraint Satisfaction Problem - CSP

• CSP represents a decision optimization problems
defining decision variables subject to constraints

• Typical CSP structure:

1. Problem Definition (what to do)

a. Define Decision Variables with all possible values

b. Define Constraints on the variables

2. Problem Resolution (how to do it)

a. Find Solution(s) that defines a value for each variable
such that all constraints are satisfied or

b. Find an optimal solution that minimizes/maximizes a
certain objective (a function of decision variables)

4 © OpenRules, Inc., 2012

Simple CSP in Java (JSR-331)

5

Solution solution = solver.findOptimalSolution(cost);

© OpenRules, Inc., 2012

Some Popular Tools

• Java API: JSR-331
– Choco, Constrainer, JSetL, 7 Linear Solvers

– Groovy, Scala interfaces

• C++ API
– IBM/ILOG CP – Commercial (www.ilog.com)

– Gecode – Open Source (www.gecode.org)

– New “or-tools” from Google

• CP environments with specialized modeling languages
– OPL from IBM/ILOG, France (www.ilog.com)

– MiniZinc from G12 group, Australia (http://www.g12.cs.mu.oz.au)

– Comet, Brown University (www.comet-online.org)

– Prolog-based tools (ECLiPSe, SICStus)

– Drools Planner (Red Hat)

– 20+ other CP Solvers: http://slash.math.unipd.it/cp/

6 © OpenRules, Inc., 2012

http://www.gecode.org/

JSR-331 “Java CP API” Standard

• JSR-331 “Java Constraint Programming API” – an
official Java Community Process (JCP) standard
www.jcp.org

• JSR-331 covers key concepts and design
decisions related to the standard representation
and resolution of constraint satisfaction and
optimization problems

• Utilizes de-facto standardized decisions from
multiple CP solvers

• Integrates CP & LP techniques

7 © OpenRules, Inc., 2012

http://www.jcp.org/

JSR-331 Implementations

Groovy and Scala APIs
8

Use Case “Staff Rostering”

• As the manager, you are required to hire and set the
weekly schedule for your employees as follows:

– Total employees required
Mon Tue Wed Thu Fri Sat Sun

5 8 9 10 16 18 12

– Available employees:
Employee Type Total Cost per Day

F/T 14 $100

P/T 4 $150

• What is the minimal staffing cost?

9 © OpenRules, Inc., 2012

Decision “DefineEmployeeSchedule”

10

Mon Tue Wed Thu Fri Sat Sun

5 8 9 10 16 18 12

Employee Type Total
Cost per

Day

F/T 14 $100

P/T 4 $150

• Presented in Excel using OpenRules BDMS

• Utilizes Rule Solver that includes templates for decision,
variables, and different constraints

© OpenRules, Inc., 2012

Decision’s Glossary

• Decision Variables:

11 © OpenRules, Inc., 2012

Decision Tables

12

Mon Tue Wed Thu Fri Sat Sun

5 8 9 10 16 18 12

Employee Type Total
Cost per

Day

F/T 14 $100

P/T 4 $150

© OpenRules, Inc., 2012

Run Decision from Java

13 © OpenRules, Inc., 2012

Decision Results
…
Found a solution with Total Cost[8700]
Found a solution with Total Cost[8650]
Found a solution with Total Cost[8600]
Found a solution with Total Cost[8550]
Found a solution with Total Cost[8500]
Found a solution with Total Cost[8450]
Found a solution with Total Cost[8400]
Found a solution with Total Cost[8350]
Found a solution with Total Cost[8300]
Found a solution with Total Cost[8250]
Found a solution with Total Cost[8200]
Found a solution with Total Cost[8150]
Found a solution with Total Cost[8100]
Found a solution with Total Cost[8100]

*** Execution Profile ***
Number of Choice Points: 94360
Number of Failures: 94333
Occupied memory: 93172496
Execution time: 14885 msec

14

==== Optimal Solution =====
 M T W T F S S
FT 5 8 9 10 14 14 12
PT 0 0 0 0 2 4 0
Total Cost: 8100
========================

© OpenRules, Inc., 2012

The Same Decision Model in Java
(JSR-331)

15 © OpenRules, Inc., 2012

Decision Modeling Considerations

• Choice of decision variable should:

– Allow to express problem constraints

– Lead to an efficient decision execution avoiding a
“combinatorial explosion”

• Example. Let’s add constraints:

– each F/T employee should work five days in a row

– each P/T employee should work two days in a row

– The old choice of decision variables would not
work anymore - we have to change the model!

17 © OpenRules, Inc., 2012

JSR-331 Scheduler

18 © OpenRules, Inc., 2012

Resource Allocation Problem

19 © OpenRules, Inc., 2012

Sample Problem Implementation
(Java with JSR-331 Scheduler)

Schedule schedule = ScheduleFactory.newSchedule(“oven”0, 11);

Activity A = schedule.addActivity(1, "A");

Activity B = schedule.addActivity(4, "B");

Activity C = schedule.addActivity(4, "C");

Activity D = schedule.addActivity(2, "D");

Activity E = schedule.addActivity(4, "E");

Resource oven = schedule.addResource(3, "oven");

oven.setCapacityMax(0, 2);

oven.setCapacityMax(1, 1);

oven.setCapacityMax(2, 0);

oven.setCapacityMax(3, 1);

oven.setCapacityMax(4, 1);

oven.setCapacityMax(10, 1);

// Resource Constraints

A.requires(oven, 2).post();

B.requires(oven, 1).post();

C.requires(oven, 1).post();

D.requires(oven, 1).post();

E.requires(oven, 2).post();

// Find Solution

schedule.scheduleActivities();

schedule.displayActivities();

SOLUTION:

A[5 -- 1 --> 6) requires oven[2]

B[3 -- 4 --> 7) requires oven[1]

C[7 -- 4 --> 11) requires oven[1]

D[0 -- 2 --> 2) requires oven[1]

E[6 -- 4 --> 10) requires oven[2]

20

Use Case “Cloud Balancing”

• You have a number of cloud computers and need to run a
number of processes on those computers.

• Each process requires certain CPU power, RAM, and network
bandwidth and incurs a certain maintenance cost (which is
fixed per computer)

• Objective: assign process to computers while minimize the
total maintenance cost.

21

C
C

C
C

P

P
P

P

P P
P

© OpenRules, Inc., 2012

Variable Computer

22

• Input classes: CloudComputer, CloudProcess

• Decision variables are in this class:

© OpenRules, Inc., 2012

Modeling and Search for
an Optimal Solution

• A small problem “4 x12” with a constraint solver

• 4 computers and 12 processes

• “Brute force” approach: 650mills

• “Sort processes first” approach: 490 mills

• A larger problem “10 x 20”

– Constraint solver takes 30 seconds

• (50x longer) and only when we set a time limit

– Linear Solver (identical source code, just different jars
in classpath)

• Finds an optimal solution in 1,200 milliseconds

23 © OpenRules, Inc., 2012

Modeling and Search for
an Optimal Solution (2)

• A large problem “50 x100”

• 50 computers and 100 processes

• Constraint solver requires special selectors and time limits

• Linear Solver takes 2.5 hours to find an optimal solution

• A huge problem “5,000 x 55,000”

• Offered at the recent ROADEF-2012 competition

• The winners found the best solution within 5 mins using a
unique selection of subsets of processes and computers and
a specially written solver

24

Time

Size
© OpenRules, Inc., 2012

http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php

• Minimizing Combinatorial Complexity

– “Combinatorial complexity” is the number of leaves on the
search tree

– Initial Decision Model
• Assigning P processes to C computers

• P decision variables with domain [0;1] for each computer

– Alternative Decision Model
• Assigning C computers to P processes

• 1 decision variable with domain [1;C] for each process

– Compare combinatorial complexity:
• Roughly: compare CP vs. PC

• E.g. 53 =125 while 35 =243

25

Smarter Decision Modeling (1)

© OpenRules, Inc., 2012

• Avoiding Symmetry

– Does not make sense to alternate (permute) between
computers/processes with identical characteristics

– Grouping by Type
• Create groups of computers with identical resource characteristics

• Create groups of processes with identical resource requirements

– Introducing an order among decision variables with
identical characteristics

– Using Set Constrained Variables

26

Smarter Decision Modeling (2)

© OpenRules, Inc., 2012

• Adding time limits for:
• Search of one solution

• The overall search

• CP solvers provide many search strategies for
selecting variables and values to try first, e.g.

• Famous n-Queens problem: using a selector
MIN_DOMAIN_MIN_VALUE improves performance 1,000 times

• Drools Planner successfully addressed large process-computer
assignment problems for 2,500 processes by using special
“just-in-time” selectors

• CP/LP tools provide different optimization options
that may be tried without changing a decision model

 27

Smarter Search Strategies (1)

© OpenRules, Inc., 2012

• There is no single rule of thumb for discovering a
good strategy. One may try strategies that:

• are deduced from common sense

• use “know-how” from the problem domain

• borrow proven methods from Operation Research (OR)

• However, larger problems may still require specialized
decision models and even specialized solvers

• Recent ROADEF-2012 competition offered a problem with up to
55,000 processes and 5,000 computers

• Find the best possible solution within 5 minutes

• The winners used a special selection of subsets of processes and
computers on each iteration and a specially written solver (utilizing
a “large neighborhood search”)

 28

Smarter Search Strategies (2)

© OpenRules, Inc., 2012

http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php

Role of Experts

• BR+CP combination creates a powerful while
intuitive decision modeling and optimization
framework!

• However, its simplicity should not mislead
business analysts (or even Java developers) that
now they can solve any decision optimization
problems

• No API can replace an expert when you deal
with large size problems

29 © OpenRules, Inc., 2012

Conclusion

• Many practical Decision Optimization problems may
be successfully modeled and solved by subject
matter experts using off-the-shelf CP/LP tools such as
Rule Solver

• The JSR-331 standard gives all BR vendors an
opportunity to add a true optimization component to
their product offerings

• The best results are achieved when a subject matter
expert works together with an OR specialist

30 © OpenRules, Inc., 2012

http://openrules.com/rulesolver.htm
http://openrules.com/jsr331/index.htm
http://openrules.com/jsr331/index.htm
http://openrules.com/jsr331/index.htm

Q&A

www.OpenRules.com

31

