IntelliFest 2012
International Conference on Reasoning Technologies

INTELLIGENCE IN THE CLOUD itelliFest

San Diego, Oct-2012

Modeling and Solving Decision ‘.:..B
. s VDOSS

Optimization Problems O @ syniiia

Jacob Feldman, PhD

OpenRules, Inc., CTO

www.openrules.com PROGRESSX

OPEN
RULES

i Decision Optimization

e Decision Optimization helps business people to:

— make better decisions

— by finding optimal (close to optimal) solutions
— among multiple alternatives

— subject to different business constraints

* Find the best possible resource utilization to achieve
a desired optimization objective such as:

— minimizing expenses or travel time
— maximizing ROI or service level, etc.

e Relies on proven mathematical techniques such as:
— Constraint and Linear Programming (CP/LP)

— integrated in modern decision modeling frameworks

© OpenRules, Inc., 2012

Typical CP Applications

5 Delivery planning =

. L P e e
* Scheduling and e

Mo | Geagashicatlocaticns | Sies | Vehicks | Debveres | Routing Pias |

Resource Allocation |

[sty cantven 10| x
¢ Complex T— S

Configuration

Problems —

¢ Supply Cha|n Name|CSP-A19 Start:{22:011 End00:01:1 B, start| B. end{ g\
{1680 (n {3600 D !
Management T e r—

e Staff Rostering
* Vehicle Routing

E000 |PIayI|Pause||Step||Reset||n|M|
6400

=
-
=
=i
:
w
=&
=
=
=
=i
-,
W

MORMAL ¥alerie
NEYE Olivier
CAMU Bernard
CONTENTFrederik

Mon Te vied WMARELLA Eric
e Avaitable esms COf SEMPELS Antonio
JADOUL Juan

¥YAN DEN HURK Jan

ARCOS Christophe

MOUSSA Simon
LENARD Olivier
PEPN Sandra

HEBBE
=[=[=|4
=|=|=|=

olofo|o|o|o|o|o|o|o|o|w

slelelefafeafafe=fef{n|[e|[=

:EE::;;:E

© OpenRules, Inc., 2012 3

i Constraint Satisfaction Problem - CSP

* CSP represents a decision optimization problems
defining decision variables subject to constraints

* Typical CSP structure:

1. Problem Definition (what to do)

a. Define Decision Variables with all possible values
b. Define Constraints on the variables

2. Problem Resolution (how to do it)

a. Find Solution(s) that defines a value for each variable
such that all constraints are satisfied or

b. Find an optimal solution that minimizes/maximizes a
certain objective (a function of decision variables)

© OpenRules, Inc., 2012

Simple CSP in Java (JSR-331)

public class Test |{

public static void main (Stringl[] args) {
// ==== PROBLEM DEFINITION ========—=—=—=———————————c——————o—=
Problem p = ProblemFactory.newProblem("Test"):;
// =—===== Define wvariables
Var ¥ = p.variable("X", 1, 10);
Var v = p.variable("¥", 1, 10);
Var z = p.variable("z", 1, 10);
Var cost = x.multiply(3) . .multiply(y) .minus(z.multiply(4)):
// ======= Define and post constraints
p.post(x, "<", y); // ¥ < ¥
p.post(x.plus(y), "=", z); // ¥ + ¥ = Z
// === PROBLEM RESOLUTION ==========s====================x==
p.log("=== Find Solution:"):;
Solver solver = p.getSolver():;
Solution solution = solver.findSolution() ;
if (seclution !'= null)

solution.log()

else

\

Solution solution = solver.findOptimalSolution(cost);

p-log("No Solution™):;

p.log("Cost

}

© OpenRules, Inc., 2012

L]

+ cost);

Some Popular Tools

 Java API: JSR-331

— Choco, Constrainer, JSetL, 7 Linear Solvers

Groovy, Scala interfaces

 C++API

IBM/ILOG CP — Commercial (www.ilog.com)
Gecode — Open Source (www.gecode.org)

New “or-tools” from Google

* CP environments with specialized modeling languages

OPL from IBM/ILOG, France (www.ilog.com)

MiniZinc from G12 group, Australia (http://www.g12.cs.mu.o0z.au)
Comet, Brown University (www.comet-online.org)

Prolog-based tools (ECLiPSe, SICStus)

Drools Planner (Red Hat)

20+ other CP Solvers: http://slash.math.unipd.it/cp/

© OpenRules, Inc., 2012

http://www.gecode.org/

A

JSR-331 “Java CP API” Standard

© OpenRules, Inc., 2012

JSR-331 “Java Constraint Programming API” — an
official Java Community Process (JCP) standard
WWW.|CP.Org

JSR-331 covers key concepts and design
decisions related to the standard representation
and resolution of constraint satisfaction and
optimization problems

Utilizes de-facto standardized decisions from
multiple CP solvers

Integrates CP & LP techniques

http://www.jcp.org/

JSR-331 Implementations

_{ Constraint Solvers }__

Choco '
Constrainer l

s

JSetL '

e

Problem
Description
(JSR-331 Standard API)

B =

Generated Standard
Problem Representation
(MPS/LP Format)

Problem
Solutions
(JSR-331 Standard API)
D

GLPK

Use Case “Staff Rostering”

* As the manager, you are required to hire and set the
weekly schedule for your employees as follows:

— Total employees required

Mon | Tue | Wed

Thu Fri

Sat Sun

5 8 9

10 16

18 12

— Available employees:

Employee Type

Total

Cost per Day

F/T

14

$100

P/T

4

$150

 What is the minimal staffing cost?

© OpenRules, Inc., 2012

MTW T F S S
FT' 5 8 9 10 14 14 12
PTO O OO0 2 4 0

Decision “DefineEmployeeSchedule”

* Presented in Excel using OpenRules BDMS

» Utilizes Rule Solver that includes templates for decision,
variables, and different constraints

Decision DefineEmployeeSchedule

Decisions

Execute Rules

Define Employee Daily Demand

= EmployeeDailyDemand()

—

Define Total Cost

= DefineTotalCost()

~

© OpenRules, Inc., 2012

Mon | Tue | Wed | Thu | Fri | Sat | Sun
5 8 9 10 16 18 12
Cost per
E
mployee Type Total Day
F/T 14 $100
P/T 4 $150

10

Decision’s Glossary

Decision Variables:

Glossary glossary

Decision Variable iodzos Attribute Domain
Concept

Mon FT monFT 0-14
Mon PT monPT 0-4
Tue FT tueFT 0-14
Tue PT tuePT 0-4
Wed FT wedFT 0-14
Wed PT wedPT 0-4
Thu FT thuFT 0-14
Thu PT Roster thuPT 0-4
FriFT friFT 0-14
FriPT friPT 0-4
SatFT satFT 0-14
Sat PT satPT 0-4
Sun FT sunFT 0-14
Sun PT sunPT 0-4
Total Cost totalCost 0-20000

© OpenRules, Inc., 2012

11

© OpenRules, Inc., 2012

Decision Tables

ActionXoperYcompareZ

Variable g;g: Variable C‘E‘E'e Value
Mon FT + Mon PT =]
Tue FT + Tue PT = 8
Wed FT + Wed PT = 9
Thu FT + Thu PT = 10

FriFT + Fri PT = 16
SatFT + Sat PT = 18
Sun FT + sun PT = 12

N

Mon | Tue | Wed | Thu | Fri | Sat | Sun
5 8 9 10 16 18 12
Cost per

Employee Type Total Day

F/T 14 $100

P/T 4 $150

DecisionTable DefineTotalCost

100,150

ActionscalProd
Name of the Scalar .
Product Numbers Variables
100,150,100,150,100,150, [Mon FT, Mon PT, Tue FT, Tue PT, Wed FT,
Total Cost 100,150,100,150,100 150, |Wed PT, Thu FT, Thu PT, Fri FT, Fri PT,

Sat FT, Sat PT, Sun FT, Sun PT

12

Run Decision from Java

Decision

decisiaon.
decision.
decision.
decision.

import com.openrules.ruleengine.Decision;
public class Main {
public static void main(String[] args) {

String fileName = "file:rules/Decision.xls";
System.setProperty("OPENRULES MODE", "Solve");

decision = new Decision("DefineEmployeeSchedule™,fileName);
put("MaxSolutions”™, "38");

put{"Minimize","Total Cost");

execute();

execute("PrintSolution™);

© OpenRules, Inc., 2012

13

Decision Results

Found a solution with Total Cost[8700]

Found a solution with Total Cost[8650]

Found a solution with Total Cost[8600]

Found a solution with Total Cost[8550]

Found a solution with Total Cost[8500]

Found a solution with Total Cost[8450]

Found a solution with Total Cost[8400]

Found a solution with Total Cost[8350]

Found a solution with Total Cost[8300]

Found a solution with Total Cost[8250]

Found a solution with Total Cost[8200]

Found a solution with Total Cost[8150]

Found a solution with Total Cost[8100]

Found a solution with Total Cost[8100]

*** Execution Profile ***

Number of Choice Points: 94360

Number of Failures: 94333

Occupied memory: 93172496 ==== Optimal Solution =====
Execution time: 14885 msec MTW T E S S

FT5 8 9 10 14 14 12
PTOOOO 2 40
Total Cost: 8100

© OpenRules, Inc., 2012

The Same Decision Model in Java
(JSR-331)

public static void main(String[] args) {
Problem p = ProblemFactory.newProblem("EmployeseRosteringl™) ;
// Define FT and PT variables
int maxFT = 14;

int maxPT = 4;

Var monFT = p.variable ("MonFT", 0, maxFT);
Var monPT = p.variable ("MonPT", 0, maxPT);
Var tueFT = p.variable ("TueFT", 0, maxFT);
Var tuePT = p.variable ("TuePT", 0,maxPT);
Var wedFT = p.variable ("WedFT", 0, maxFT);
Var wedPT = p.variable ("WedPT", 0, maxPT);
Var thufFT = p.variable ("ThurFT", 0, maxFT):;
Var thuPT = p.variable ("ThuPT", 0, maxzPT):;
Var frifFT = p.variable("FrifFT", 0, maxFT):;
Var friPT = p.wvariable ("FriPT", 0, maxPT);
Var satFT = p.variable("SatFT", 0, maxFT);
Var satPT = p.variable("SatPT", 0, maxPT);
Var sunFT = p.variable("SunFT", 0, maxFT);
Var sunPT = p.variable ("SunPT", 0, maxPT);

// Post daily constraints

p.-post (monFT.plus (monPT) , "=",5);

p.post (tueFT.plus (tuePT),"=",8);

p.post (wedFT.plus (wedPT) , "=",9) ;

p.post (thuFT.plus (thuPT),"=",10);

p.post (frifFT.plus (fripT) , "=",16);

p.post (satFT.plus (satPT),"=",18);

p.post (sunfFT.plus (sunPT) ,"=",12) ;

// Define costs

int[] costs = {100,150,100,150,100,150,100,150,100,150,100,150,100,150};
Var[] vars = {monFT,monPT, tusFT, tuePT, wedFT, wedPT, thuFT, thuPT, frifT, friPT, satFT,satPT, sunFT, sunbT};

Var totalCost p.scalProd(costs, wvars);
p.add("TotalCost",totalCost) ;

© OpenRules, Inc., 2012

A

Decision Modeling Considerations

 Choice of decision variable should:

— Allow to express problem constraints

— Lead to an efficient decision execution avoiding a
“combinatorial explosion”

* Exam
— eacC
— eacC

ole. Let’s add constraints:
N F/T employee should work five days in a row

n P/T employee should work two days in a row

— The old choice of decision variables would not
work anymore - we have to change the model!

© OpenRules, Inc., 2012

17

JSR-331 Scheduler

SchedulingProblem

Temporal
Constraints N
Activity Resource
Activitv________ Requirement Resource
Activity < Constraints > Resource

© OpenRules, Inc., 2012

Resource Allocation Problem

The following problem deals with activities that require a common resource. Let's
consider 5 different orders (activities) that fire batches of bricks in an oven (a resource
with a limited capacity). Each order ‘s size and duration, as well as the oven's capacity,
are described in the following figure:

Batches

A
2
k4 Days

L \J) \] L LJ L])
01 2 3 4 8§ 6 7 8 9 1011
Global capacity of the oven
A | 2 batches, 1 day
B I batch, 4 days S Activities

C 1 batch, 4 days

D | 1 batch, 2 days

E 2 batches, 4 days

© OpenRules, Inc., 2012

19

Sample Problem Implementation
(Java with JSR-331 Scheduler)

Schedule schedule = ScheduleFactory.newSchedule(“oven”0, 11); R

| D 1 batch, 2 days

Activity A = schedule.addActivity(1, "A");
Activity B = schedule.addActivity(4, "B");
Activity C = schedule.addActivity(4, "C");
Activity D = schedule.addActivity(2, "D");
Activity E = schedule.addActivity(4, "E");
Resource oven = schedule.addResource(3, "oven");

E

2 batches, 4 days

oven.setCapacityMax(0, 2); A

oven.setCapacityMax(1, 1); 3 &

oven.setCapacityMax(2, 0); 2

oven.setCapacityMax(3, 1); 1 - Days
oven.setCapacityMax(4, 1); : — i
oven.setCapacityMax(10, 1); 01 3456 7 8 9101

Il Resource Constraints
A.requires(oven, 2).post();
B.requires(oven, 1).post();
C.requires(oven, 1).post();
D.requires(oven, 1).post();
E.requires(oven, 2).post();

// Find Solution
schedule.scheduleActivities();
schedule.displayActivities();

SOLUTION:

A[5 -- 1 --> 6) requires oven|[2]
B[3 -- 4 --> 7) requires oven[1]
C[7 -- 4 --> 11) requires oven[1]
D[O -- 2 --> 2) requires oven[1]
E[6 -- 4 --> 10) requires oven|[2]

20

Use Case “Cloud Balancing”

* You have a number of cloud computers and need to run a
number of processes on those computers.

* Each process requires certain CPU power, RAM, and network
bandwidth and incurs a certain maintenance cost (which is
fixed per computer)

e Objective: assigh process to computers while minimize the
total maintenance cost.

© OpenRules, Inc., 2012

21

Variable Computer

* Input classes: CloudComputer, CloudProcess
* Decision variables are in this class:

Ppublic class VarComputer {
CloudComputer computer;
Var[] processVars; // processVars[i] = 1 means this computer is used by the i-th

[process
public VarComputer (Problem p, CloudComputer computer, CloudProcess[] processes,

int[] requiredMemories, int[] requiredCpuPowers, int[] requiredNetworkBandwidths)
this.computer = computer;
processVars = new Var[processes.lengthl];
for (int i = 0; 1 « processes.length:; i++) |

String name = "P" 4 processes[i].getId() + "C" 4+ computer.getId():;

processVars[i] = p.variable (name,0,1);

}

p-post (requiredMemories, processVars, "<=",computer.getMemocry());
p-post (requiredCpuPowers, processVars, "<=",computer.getCpuPower ()) ;
p-post (requiredNetworkBandwidths, processVars, "<=",computer.getNetworkBandwidth()):

public Var[] getProcessVars() {
return processvVars;

© OpenRules, Inc., 2012

22

el
L

i Modeling and Search for
an Optimal Solution <& < e

A small problem “4 x12” with a constraint solver
* 4 computers and 12 processes
* “Brute force” approach: 650mills
* “Sort processes first” approach: 490 mills

* A larger problem “10 x 20”
— Constraint solver takes 30 seconds

e (50x longer) and only when we set a time limit

— Linear Solver (identical source code, just different jars
in classpath)

* Finds an optimal solution in 1,200 milliseconds

© OpenRules, Inc., 2012 23

RULE Modeling and Search for
an Optimal Solution (2)

* A large problem “50 x100” 5' "f "'?-g
* 50 computers and 100 processes
* Constraint solver requires special selectors and time limits
* Linear Solver takes 2.5 hours to find an optimal solution

* A huge problem “5,000 x 55,000”
e Offered at the recent ROADEF-2012 competition

* The winners found the best solution within 5 mins using a
unique selection of subsets of processes and computers and
a specially written solver N

© OpenRules, Inc., 2012 .
Size

http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php

Smarter Decision Modeling (1)

* Minimizing Combinatorial Complexity

— “Combinatorial complexity” is the number of leaves on the

search tree P TN

') (adfs)

_ L) e o ,\,_ N)(‘/4 n . \'

Initial Decision Model oy L%)?_ Bl
- ~ea_S

* Assigning P processes to C computers < o W
e P decision variables with domain [0;1] for each computer

— Alternative Decision Model
* Assigning C computers to P processes
* 1 decision variable with domain [1;C] for each process

— Compare combinatorial complexity:
* Roughly: compare CPvs. P¢
e E.g.53=125 while 3°=243

© OpenRules, Inc., 2012 25

Smarter Decision Modeling (2)

* Avoiding Symmetry
— Does not make sense to alternate (permute) between
computers/processes with identical characteristics

— Grouping by Type
* Create groups of computers with identical resource characteristics
* Create groups of processes with identical resource requirements

— Introducing an order among decision variables with
identical characteristics

— Using Set Constrained Variables

© OpenRules, Inc., 2012 26

g

Smarter Search Strategies (1)
* Adding time limits for:

* Search of one solution
* The overall search

e CP solvers provide many search strategies for
selecting variables and values to try first, e.g.

* Famous n-Queens problem: using a selector
MIN_DOMAIN_MIN_VALUE improves performance 1,000 times

* Drools Planner successfully addressed large process-computer
assignment problems for 2,500 processes by using special
“just-in-time” selectors

* CP/LP tools provide different optimization options
that may be tried without changing a decision model

© OpenRules, Inc., 2012

27

A

Smarter Search Strategies (2)

* There is no single rule of thumb for discovering a
good strategy. One may try strategies that:

e are deduced from common sense
e use “know-how” from the problem domain
* borrow proven methods from Operation Research (OR)

 However, larger problems may still require specialized

decision models and even specialized solvers

 Recent ROADEF-2012 competition offered a problem with up to
55,000 processes and 5,000 computers

* Find the best possible solution within 5 minutes

* The winners used a special selection of subsets of processes and
computers on each iteration and a specially written solver (utilizing
a “large neighborhood search”)

© OpenRules, Inc., 2012

28

http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/en/index.php

A

Role of Experts

e BR+CP combination creates a powerful while
intuitive decision modeling and optimization
framework!

* However, its simplicity should not mislead
business analysts (or even Java developers) that
now they can solve any decision optimization

prob

* NOA
with

© OpenRules, Inc., 2012

ems
P| can replace an expert when you deal

arge size problems

29

A

Conclusion

 Many practical Decision Optimization problems may
be successfully modeled and solved by subject
matter experts using off-the-shelf CP/LP tools such as

Rule Solver

 The JSR-331 standard gives all BR vendors an
opportunity to add a true optimization component to
their product offerings

* The best results are achieved when a subject matter
expert works together with an OR specialist

© OpenRules, Inc., 2012

30

http://openrules.com/rulesolver.htm
http://openrules.com/jsr331/index.htm
http://openrules.com/jsr331/index.htm
http://openrules.com/jsr331/index.htm

el
o

Q&A

www.OpenRules.com

31

