
Developing a highly dynamic web
application for a large bank using
rules-based technology

• Part 1: Requirements and zooming in on a solution

• Part 2: Design and development

• Part 3: Conclusion and lessons learned

• Requirements & Reference Architecture

• Changing directions

• Product / Vendor Options

• Selected Product and Reasons Why

The new onboarding process:

• Has to seamlessly extend current onboarding process (the existing system) including matching UI

experience

• Has over 300 new questions to ask depending on customer or account types, planned account

activities and previously provided answers.

• Has to implement dynamic flows with overlaying complex UI Interactions:

• Different UI operating modes

• Conditional warning messages on many of the user actions.

• Hard stops

• Save / cancel behavior

• Not movable Delivery Deadline

• Facing regulatory sanctions if not delivered.

• Need to account for lead time needed to develop training materials and provide necessary training in 6000 +

branches.

The project involves 6 major components and
several external vendors and systems:

• Existing onboarding System A (vendor #1)

• New System B used to extent the onboarding System
A (vendor #2) that implements vast majority of the
new questions / logic / complexity (over 90%).

• ESB / ODS as communication integration hubs /
channels for data flow into a Risk Scoring Engine as
the final destination (components 2,3 and 4)

• Rules based profile completeness evaluation service

• The new application is a separate application, but
has to look and feel exactly like the existing one

• Has to integrate with ESB to receive / pass data.

Upon finalizing design, cost and schedule and 3 Months before delivery date - a

major set back from vendor #2:

• Some of the “must have” requirements cannot be met.

• Overall cost and schedule is longer than originally estimated

Need to find a solution that will:

 Implement functionality AND Meet all of the must have requirements that the current vendor cannot meet

 Return project back to original cost and schedule

Based on:

• cheer amount of logic required for the dynamic application to function

• Short project timeline left

• Requirements to use rules engine as one of the components anyways

The call is made to use rules driven UI framework to try to build the new application.

Go/No Go Decision:

• Quick POC to prove that it might be a viable approach:

• Must have requirements to be implemented as part of the POC

• Most complex section of the dynamic forms must be implemented as part of the POC

Other Major (must have requirements) for the framework for the Go/No Go decision.

• Robust Rules Management UI – to many to manage otherwise (over a thousand that needs to be built within a few months)

• Cost - there are more than 6000 thousand regular users, so seat licenses or any other complex licensing requirements may impair the

project progress

• Dependency on other components, availability of ready to start resources, or inflexible development lifecycle is a MAJOR risk– only 2

months to deliver.

The rules based web frameworks considered:

• Appian

• IBM ILOG

• OpenRules ORD.

OpenRules Framework was selected based on combination of all factors:

• Cost and Schedule

• A competed POC to prove the ability to meet business the business requirements

• Excel based UI for entering rules

• Simple rules configuration logic

• Simple licensing requirements

• Positive reference checks

TOC:

• Section A: Running OOTB solution based on templates as a starting point for new

application development and structure of typical apps

• Section B: Summary of framework and support provided by OpenRules to build the

dynamic web applications

• ORD Templates

• Data Binding and Special Tags

• Section C: Design and Development to specific requirements:

• Rules based web forms design

• UI Look and Feel

• Back End Integration

• Any Other Customizations

• Required Software:

• Java

• Tomcat

• Ant

• OpenRules libraries (openRules.config)

• Sample Template: Dialog Credit Card

• Demo: Installation and Deployment

of a complete OOTB solution

• Configure deploy settings

• Start tomcat

• Run deploy.bat

• Demo: A working dynamic web

Application
• Navigation

• Dynamic Question / Answers

• Automated pre-fills based on answers

• Summary of the OpenRules based Web

Application architecture.

A Web
Application

OpenRules
Dialog

OpenRules
Forms

OpenRules
Engine

• Demo: Rules for defining structure and dynamic

aspects of the web forms (ORD based):

• Static definition of Pages, Sections, Questions, Answers, Auto-

Responses, Custom Controls

• Dynamic aspects: defining navigation (pages or tabs)

templates, hiding/showing sections, questions children of

questions, resetting of sections, answers, defining and

processing events.

• Underlying Forms Support (Example – Next

Page):

• <F> tag for data binding and actions

• <C> tag for including any code

• Layout marker to create any HTML content

• Method marker to write any java based code right within the

excel

• <F> tag

• Data binding controls

• <C> tag

• including any code

• Layout marker

• To create any HTML content

• Method marker

• To write any java based code right within the excel

TOC:

• Extending User Interface: Using HTML / JavaScript / CSS, and OpenRules templates

to create reach user interface
• Using / Modifying default look and feel using css and page, section, question templates

• Extending existing or building new Question/Answer Templates

• Adding reach GUI elements and interactions

• Back end integration activities and customizations: building connectors into external

systems.
• Integration with Vendor A

• Integration with Enterprise Service Bus (ESB)

• Extending default capabilities of ORD.
• Support for multiple questionnaires in a session

• Support for ability to copy a portion of answers from another questionnaire in the session

• Support for tabs rather than pages

• Adding client / server side logic as per requirements to control conditional actions, modes, hard stops

• Summary:

• html / css touch up to existing

default templates to have a

required look and feel

• Example:
• Appearance made to match the existing

requirements

• Removed regular header and

replaced it with tabs

• Added “Ok / Cancel” Footer

• Indented parent / child questions

• Different operating modes (required

more work):

• Prospecting (questions are not required)

• Required (the same questions become

required)

Summary:

• Using more JavaScript, CSS, ORD

templates create reach GUI: different

type of controls, additional dialog

boxes for alerts, confirmations.

Highlights:

• Use ANY js/css frameworks:

jquery ui, tw bootstrap, etc.

There are dozens of pre-built

templates:

• Demo of the question templates

• Demo: extending template as

Date Picker:

• Use existing template (TextBox)

• Define the hook class in
Questions section

• Configure control behavior in

JavaScript

If not enough, steps to create
your own: Multiselect Control
example

• Requirements:
• Ability to select more 1

entry

• Ability to open / hide
sections / questions based
on values selected.

• Steps to build
• Define a new template

• Call it using configuration

• Enhance with JS/CSS
behavior - just as any other
template.

• Demo of using rules outside of ORD templates

• hard Stops, high risk checks, NAICS codes

FYI: Keeping code clean

using rules…

Externalize rules out of java

code when possible.

Example/Demo: NAICS

categories

• By default ORD handled
• One object in session at a time

• Multiple pages but not multiple

sections

• Our requirements:

• Use tabs, not pages

• Define tabs at run time based

on objects loaded

• Handle different types of

objects

• Handle multiple objects and

switch between them on a fly

• In case of multiple accounts,

we should be able to copy

information category by

category

Conclusion:

• Very powerful yet intuitive rules and template architecture

• Short run / test cycles of building web forms using rules dramatically reduce SDLC

• All rules defined declaratively, externalized out of the application code

Suggestions:

• Consider splitting work into separate but parallel tracks using the OOTB template

and independently working on UI, back end integration, structure of the web forms

• Building your rules:

• Rules become as simple as they look ONLY for minds that are analytical in nature.

• Have people with analytical mind to understand business requirements and translate them

into rules.

TOC:

• Demo: building forms for entering more than one row

• Demo: dealing with auto-responses.

